Cargando…
Machine Learning Classification Combining Multiple Features of A Hyper-Network of fMRI Data in Alzheimer's Disease
Exploring functional interactions among various brain regions is helpful for understanding the pathological underpinnings of neurological disorders. Brain networks provide an important representation of those functional interactions, and thus are widely applied in the diagnosis and classification of...
Autores principales: | Guo, Hao, Zhang, Fan, Chen, Junjie, Xu, Yong, Xiang, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702364/ https://www.ncbi.nlm.nih.gov/pubmed/29209156 http://dx.doi.org/10.3389/fnins.2017.00615 |
Ejemplares similares
-
Construction and Multiple Feature Classification Based on a High-Order Functional Hypernetwork on fMRI Data
por: Li, Yao, et al.
Publicado: (2022) -
Alzheimer Classification Using a Minimum Spanning Tree of High-Order Functional Network on fMRI Dataset
por: Guo, Hao, et al.
Publicado: (2017) -
Combining Multiple Resting-State fMRI Features during Classification: Optimized Frameworks and Their Application to Nicotine Addiction
por: Ding, Xiaoyu, et al.
Publicado: (2017) -
Machine Learning Based Classification of Resting-State fMRI Features Exemplified by Metabolic State (Hunger/Satiety)
por: Al-Zubaidi, Arkan, et al.
Publicado: (2019) -
A Hybrid Machine Learning Method for Fusing fMRI and Genetic Data: Combining both Improves Classification of Schizophrenia
por: Yang, Honghui, et al.
Publicado: (2010)