Cargando…

The Oxidative Stress Agent Hypochlorite Stimulates c-di-GMP Synthesis and Biofilm Formation in Pseudomonas aeruginosa

The opportunistic human pathogen Pseudomonas aeruginosa is able to survive under a variety of often harmful environmental conditions due to a multitude of intrinsic and adaptive resistance mechanisms, including biofilm formation as one important survival strategy. Here, we investigated the adaptatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Strempel, Nikola, Nusser, Michael, Neidig, Anke, Brenner-Weiss, Gerald, Overhage, Joerg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702645/
https://www.ncbi.nlm.nih.gov/pubmed/29213262
http://dx.doi.org/10.3389/fmicb.2017.02311
_version_ 1783281565680271360
author Strempel, Nikola
Nusser, Michael
Neidig, Anke
Brenner-Weiss, Gerald
Overhage, Joerg
author_facet Strempel, Nikola
Nusser, Michael
Neidig, Anke
Brenner-Weiss, Gerald
Overhage, Joerg
author_sort Strempel, Nikola
collection PubMed
description The opportunistic human pathogen Pseudomonas aeruginosa is able to survive under a variety of often harmful environmental conditions due to a multitude of intrinsic and adaptive resistance mechanisms, including biofilm formation as one important survival strategy. Here, we investigated the adaptation of P. aeruginosa PAO1 to hypochlorite (HClO), a phagocyte-derived host defense compound and frequently used disinfectant. In static biofilm assays, we observed a significant enhancement in initial cell attachment in the presence of sublethal HClO concentrations. Subsequent LC-MS analyses revealed a strong increase in cyclic-di-GMP (c-di-GMP) levels suggesting a key role of this second messenger in HClO-induced biofilm development. Using DNA microarrays, we identified a 26-fold upregulation of ORF PA3177 coding for a putative diguanylate cyclase (DGC), which catalyzes the synthesis of the second messenger c-di-GMP – an important regulator of bacterial motility, sessility and persistence. This DGC PA3177 was further characterized in more detail demonstrating its impact on P. aeruginosa motility and biofilm formation. In addition, cell culture assays attested a role for PA3177 in the response of P. aeruginosa to human phagocytes. Using a subset of different mutants, we were able to show that both Pel and Psl exopolysaccharides are effectors in the PA3177-dependent c-di-GMP network.
format Online
Article
Text
id pubmed-5702645
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-57026452017-12-06 The Oxidative Stress Agent Hypochlorite Stimulates c-di-GMP Synthesis and Biofilm Formation in Pseudomonas aeruginosa Strempel, Nikola Nusser, Michael Neidig, Anke Brenner-Weiss, Gerald Overhage, Joerg Front Microbiol Microbiology The opportunistic human pathogen Pseudomonas aeruginosa is able to survive under a variety of often harmful environmental conditions due to a multitude of intrinsic and adaptive resistance mechanisms, including biofilm formation as one important survival strategy. Here, we investigated the adaptation of P. aeruginosa PAO1 to hypochlorite (HClO), a phagocyte-derived host defense compound and frequently used disinfectant. In static biofilm assays, we observed a significant enhancement in initial cell attachment in the presence of sublethal HClO concentrations. Subsequent LC-MS analyses revealed a strong increase in cyclic-di-GMP (c-di-GMP) levels suggesting a key role of this second messenger in HClO-induced biofilm development. Using DNA microarrays, we identified a 26-fold upregulation of ORF PA3177 coding for a putative diguanylate cyclase (DGC), which catalyzes the synthesis of the second messenger c-di-GMP – an important regulator of bacterial motility, sessility and persistence. This DGC PA3177 was further characterized in more detail demonstrating its impact on P. aeruginosa motility and biofilm formation. In addition, cell culture assays attested a role for PA3177 in the response of P. aeruginosa to human phagocytes. Using a subset of different mutants, we were able to show that both Pel and Psl exopolysaccharides are effectors in the PA3177-dependent c-di-GMP network. Frontiers Media S.A. 2017-11-22 /pmc/articles/PMC5702645/ /pubmed/29213262 http://dx.doi.org/10.3389/fmicb.2017.02311 Text en Copyright © 2017 Strempel, Nusser, Neidig, Brenner-Weiss and Overhage. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Strempel, Nikola
Nusser, Michael
Neidig, Anke
Brenner-Weiss, Gerald
Overhage, Joerg
The Oxidative Stress Agent Hypochlorite Stimulates c-di-GMP Synthesis and Biofilm Formation in Pseudomonas aeruginosa
title The Oxidative Stress Agent Hypochlorite Stimulates c-di-GMP Synthesis and Biofilm Formation in Pseudomonas aeruginosa
title_full The Oxidative Stress Agent Hypochlorite Stimulates c-di-GMP Synthesis and Biofilm Formation in Pseudomonas aeruginosa
title_fullStr The Oxidative Stress Agent Hypochlorite Stimulates c-di-GMP Synthesis and Biofilm Formation in Pseudomonas aeruginosa
title_full_unstemmed The Oxidative Stress Agent Hypochlorite Stimulates c-di-GMP Synthesis and Biofilm Formation in Pseudomonas aeruginosa
title_short The Oxidative Stress Agent Hypochlorite Stimulates c-di-GMP Synthesis and Biofilm Formation in Pseudomonas aeruginosa
title_sort oxidative stress agent hypochlorite stimulates c-di-gmp synthesis and biofilm formation in pseudomonas aeruginosa
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702645/
https://www.ncbi.nlm.nih.gov/pubmed/29213262
http://dx.doi.org/10.3389/fmicb.2017.02311
work_keys_str_mv AT strempelnikola theoxidativestressagenthypochloritestimulatescdigmpsynthesisandbiofilmformationinpseudomonasaeruginosa
AT nussermichael theoxidativestressagenthypochloritestimulatescdigmpsynthesisandbiofilmformationinpseudomonasaeruginosa
AT neidiganke theoxidativestressagenthypochloritestimulatescdigmpsynthesisandbiofilmformationinpseudomonasaeruginosa
AT brennerweissgerald theoxidativestressagenthypochloritestimulatescdigmpsynthesisandbiofilmformationinpseudomonasaeruginosa
AT overhagejoerg theoxidativestressagenthypochloritestimulatescdigmpsynthesisandbiofilmformationinpseudomonasaeruginosa
AT strempelnikola oxidativestressagenthypochloritestimulatescdigmpsynthesisandbiofilmformationinpseudomonasaeruginosa
AT nussermichael oxidativestressagenthypochloritestimulatescdigmpsynthesisandbiofilmformationinpseudomonasaeruginosa
AT neidiganke oxidativestressagenthypochloritestimulatescdigmpsynthesisandbiofilmformationinpseudomonasaeruginosa
AT brennerweissgerald oxidativestressagenthypochloritestimulatescdigmpsynthesisandbiofilmformationinpseudomonasaeruginosa
AT overhagejoerg oxidativestressagenthypochloritestimulatescdigmpsynthesisandbiofilmformationinpseudomonasaeruginosa