Cargando…

Mechanism of Chinese Medicine Herbs Effects on Chronic Heart Failure Based on Metabolic Profiling

Chronic heart failure (CHF) is a major public health problem in huge population worldwide. The detailed understanding of CHF mechanism is still limited. Zheng (syndrome) is the criterion of diagnosis and therapeutic in Traditional Chinese Medicine (TCM). Syndrome prediction may be a better approach...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Kuo, Zhao, Huihui, Gao, Jian, Wen, Binyu, Jia, Caixia, Wang, Zhiyong, Zhang, Feilong, Wang, Jinping, Xie, Hua, Wang, Juan, Wang, Wei, Chen, Jianxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702651/
https://www.ncbi.nlm.nih.gov/pubmed/29213243
http://dx.doi.org/10.3389/fphar.2017.00864
Descripción
Sumario:Chronic heart failure (CHF) is a major public health problem in huge population worldwide. The detailed understanding of CHF mechanism is still limited. Zheng (syndrome) is the criterion of diagnosis and therapeutic in Traditional Chinese Medicine (TCM). Syndrome prediction may be a better approach for understanding of CHF mechanism basis and its treatment. The authors studied disturbed metabolic biomarkers to construct a predicting mode to assess the diagnostic value of different syndrome of CHF and explore the Chinese herbal medicine (CHM) efficacy on CHF patients. A cohort of 110 patients from 11 independent centers was studied and all patients were divided into 3 groups according to TCM syndrome differentiation: group of Qi deficiency syndrome, group of Qi deficiency and Blood stasis syndrome, and group of Qi deficiency and Blood stasis and Water retention syndrome. Plasma metabolomic profiles were determined by UPLC-TOF/MS and analyzed by multivariate statistics. About 6 representative metabolites were highly possible to be associated with CHF, 4, 7, and 5 metabolites with Qi deficiency syndrome, Qi deficiency and Blood stasis syndrome, and Qi deficiency and Blood stasis and Water retention syndrome (VIP > 1, p < 0.05). The diagnostic model was further constructed based on the metabolites to diagnose other CHF patients with satisfying sensitivity and specificity (sensitivity and specificity are 97.1 and 80.6% for CHF group vs. NH group; 97.1 and 80.0% for QD group vs. NH group; 97.1 and 79.5% for QB group vs. NH group; 97.1 and 88.9% for QBW group vs. NH group), validating the robustness of plasma metabolic profiling to diagnostic strategy. By comparison of the metabolic profiles, 9 biomarkers, 2-arachidonoylglycerophosphocholine, LysoPE 16:0, PS 21:0, LysoPE 20:4, LysoPE 18:0, linoleic acid, LysoPE 18:2, 4-hydroxybenzenesulfonic acid, and LysoPE 22:6, may be especially for the effect of CHM granules. A predicting model was attempted to construct and predict patient based on the related symptoms of CHF and the potential biomarkers regulated by CHM were explored. This trial was registered with NCT01939236 (https://clinicaltrials.gov/).