Cargando…

Data on novel DNA methylation changes induced by valproic acid in human hepatocytes

Valproic acid (VPA) is a widely prescribed antiepileptic drug in the world. Despite its pharmacological importance, it may cause liver toxicity and steatosis. However the exact mechanism of the steatosis formation is unknown. The data presented in this DIB publication is used to further investigate...

Descripción completa

Detalles Bibliográficos
Autores principales: Wolters, JarnoEJ, van Breda, SimoneGJ, Claessen, SandraM, de Kok, TheoMCM, Kleinjans, JosCS
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702865/
https://www.ncbi.nlm.nih.gov/pubmed/29201983
http://dx.doi.org/10.1016/j.dib.2017.11.031
Descripción
Sumario:Valproic acid (VPA) is a widely prescribed antiepileptic drug in the world. Despite its pharmacological importance, it may cause liver toxicity and steatosis. However the exact mechanism of the steatosis formation is unknown. The data presented in this DIB publication is used to further investigate the VPA-induced mechanisms of steatosis by analyzing changes in patterns of methylation. Therefore, primary human hepatocytes (PHHs) were exposed to VPA at a concentration which was shown to cause steatosis without inducing overt cytotoxicity. VPA was administered for 5 days daily to PHHs. Furthermore, after 5 days VPA-treatment parts of the PHHs were followed for a 3 days washout. Differentially methylated DNA regions (DMRs) were identified by using the ‘Methylated DNA Immuno-Precipitation - sequencing’ (MeDIP-seq) method. The data presented in this DIB demonstrate induced steatosis pathways by all DMRs during VPA-treatment, covering interesting drug-induced steatosis genes (persistent DMRs upon terminating VPA treatment and the EP300 network). This was illustrated in our associated article (Wolters et al., 2017) [1]. MeDIP-seq raw data are available on ArrayExpress (accession number: E-MTAB-4437).