Cargando…
Partial or entire: Distinct responses of two types of chloroplast autophagy
Autophagy carries out intracellular degradation of cytoplasmic components, which is important for the removal of dysfunctional organelles and for efficient nutrient recycling in eukaryotic cells. Most proteins in plant green tissues are found in chloroplasts, mainly as photosynthetic proteins that c...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5703251/ https://www.ncbi.nlm.nih.gov/pubmed/29040052 http://dx.doi.org/10.1080/15592324.2017.1393137 |
Sumario: | Autophagy carries out intracellular degradation of cytoplasmic components, which is important for the removal of dysfunctional organelles and for efficient nutrient recycling in eukaryotic cells. Most proteins in plant green tissues are found in chloroplasts, mainly as photosynthetic proteins that constantly accumulate damage caused by sunlight. Our recent study investigated the involvement of autophagy in the turnover of damaged chloroplasts and found that entire photodamaged chloroplasts are transported into the vacuole for degradation via an autophagy process termed chlorophagy. Our previous studies also established that autophagy can also degrade chloroplast components piecemeal: chloroplast stroma is transported for degradation via autophagy vesicles termed Rubisco-containing bodies (RCB). During sugar starvation-induced senescence in darkened leaves, the RCB pathway is preferentially active. By contrast, we observed active chlorophagy without prior induction of RCB production in photodamaged leaves. These distinct responses between the RCB pathway and chlorophagy support the notion that the induction of the partial-type and entire-organelle-type chloroplast autophagy are differentially regulated by individual upstream molecules. This finding further suggests that the two types of autophagy are coordinated to achieve the controlled chloroplast turnover in response to specific conditions. |
---|