Cargando…

Assessment of automated analysis of portable oximetry as a screening test for moderate-to-severe sleep apnea in patients with chronic obstructive pulmonary disease

BACKGROUND: The coexistence of obstructive sleep apnea syndrome (OSAS) and chronic obstructive pulmonary disease (COPD) leads to increased morbidity and mortality. The development of home-based screening tests is essential to expedite diagnosis. Nevertheless, there is still very limited evidence on...

Descripción completa

Detalles Bibliográficos
Autores principales: Andrés-Blanco, Ana M., Álvarez, Daniel, Crespo, Andrea, Arroyo, C. Ainhoa, Cerezo-Hernández, Ana, Gutiérrez-Tobal, Gonzalo C., Hornero, Roberto, del Campo, Félix
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5703515/
https://www.ncbi.nlm.nih.gov/pubmed/29176802
http://dx.doi.org/10.1371/journal.pone.0188094
Descripción
Sumario:BACKGROUND: The coexistence of obstructive sleep apnea syndrome (OSAS) and chronic obstructive pulmonary disease (COPD) leads to increased morbidity and mortality. The development of home-based screening tests is essential to expedite diagnosis. Nevertheless, there is still very limited evidence on the effectiveness of portable monitoring to diagnose OSAS in patients with pulmonary comorbidities. OBJECTIVE: To assess the influence of suffering from COPD in the performance of an oximetry-based screening test for moderate-to-severe OSAS, both in the hospital and at home. METHODS: A total of 407 patients showing moderate-to-high clinical suspicion of OSAS were involved in the study. All subjects underwent (i) supervised portable oximetry simultaneously to in-hospital polysomnography (PSG) and (ii) unsupervised portable oximetry at home. A regression-based multilayer perceptron (MLP) artificial neural network (ANN) was trained to estimate the apnea-hypopnea index (AHI) from portable oximetry recordings. Two independent validation datasets were analyzed: COPD versus non-COPD. RESULTS: The portable oximetry-based MLP ANN reached similar intra-class correlation coefficient (ICC) values between the estimated AHI and the actual AHI for the non-COPD and the COPD groups either in the hospital (non-COPD: 0.937, 0.909–0.956 CI95%; COPD: 0.936, 0.899–0.960 CI95%) and at home (non-COPD: 0.731, 0.631–0.808 CI95%; COPD: 0.788, 0.678–0.864 CI95%). Regarding the area under the receiver operating characteristics curve (AUC), no statistically significant differences (p >0.01) between COPD and non-COPD groups were found in both settings, particularly for severe OSAS (AHI ≥30 events/h): 0.97 (0.92–0.99 CI95%) non-COPD vs. 0.98 (0.92–1.0 CI95%) COPD in the hospital, and 0.87 (0.79–0.92 CI95%) non-COPD vs. 0.86 (0.75–0.93 CI95%) COPD at home. CONCLUSION: The agreement and the diagnostic performance of the estimated AHI from automated analysis of portable oximetry were similar regardless of the presence of COPD both in-lab and at-home. Particularly, portable oximetry could be used as an abbreviated screening test for moderate-to-severe OSAS in patients with COPD.