Cargando…

Transient locking of the hook procures enhanced motility to flagellated bacteria

Flagellated bacteria often proliferate in inhomogeneous environments, such as biofilms, swarms and soil. In such media, bacteria are observed to move efficiently only if they can get out of “dead ends” by changing drastically their swimming direction, and even to completely reverse it. Even though t...

Descripción completa

Detalles Bibliográficos
Autores principales: Duchesne, Ismaël, Galstian, Tigran, Rainville, Simon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5703839/
https://www.ncbi.nlm.nih.gov/pubmed/29180634
http://dx.doi.org/10.1038/s41598-017-16562-4
Descripción
Sumario:Flagellated bacteria often proliferate in inhomogeneous environments, such as biofilms, swarms and soil. In such media, bacteria are observed to move efficiently only if they can get out of “dead ends” by changing drastically their swimming direction, and even to completely reverse it. Even though these reorientations are ubiquitous, we have only recently begun to describe and understand how they happen. In the present work, we visualized the flagella of bacteria swimming in a soft agar solution. The surprising observation that the filaments do not rotate while being flipped from one side of the cell to the other suggests that reversals are driven directly by the motor rather than by the thrust created by the rotating filament. This was confirmed by observing bacteria in a liquid crystal, where the linear movement of bacteria greatly simplifies the analysis. These observations suggest that the reversal and reorientation processes involve a temporary locking of the flagellum’s hook, which is the normally flexible joint between the rotary motor and the long helical filament that propels the cell. This newly described locked-hook mode occurs only when the motor switches to a clockwise rotation. That correlates with other phenomena that are triggered by a switch in one direction and not the other.