Cargando…

Influence of Sonication on Bacterial Regrowth from Antibiotic Loaded PMMA Scaffolds - An In-vitro Study

Periprosthetic joint infection (PJI) is one of the most challenging complications after joint replacement. However, when treated correctly, chances of recovery are good. The most important step in correct diagnosis and management of PJI is the detection of the causative germ. In the last years, the...

Descripción completa

Detalles Bibliográficos
Autores principales: Clauss, Martin, Laschkolnig, Esther, Graf, Susanne, Kühn, Klaus-Dieter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5704003/
https://www.ncbi.nlm.nih.gov/pubmed/29188173
http://dx.doi.org/10.7150/jbji.22382
_version_ 1783281793964703744
author Clauss, Martin
Laschkolnig, Esther
Graf, Susanne
Kühn, Klaus-Dieter
author_facet Clauss, Martin
Laschkolnig, Esther
Graf, Susanne
Kühn, Klaus-Dieter
author_sort Clauss, Martin
collection PubMed
description Periprosthetic joint infection (PJI) is one of the most challenging complications after joint replacement. However, when treated correctly, chances of recovery are good. The most important step in correct diagnosis and management of PJI is the detection of the causative germ. In the last years, the use of sonication in the diagnostic process has become more important. However, this diagnostic methodology has been controversially discussed when used in combination with antibiotic loaded bone cement (PMMA), which is frequently used in joint replacement surgeries. The aim of this study was thus to analyse in vitro bacterial growth in sonication fluid cultures obtained from antibiotic loaded PMMA which were contaminated with various bacterial biofilms. Sonication fluid obtained from antibiotic loaded PMMA (Copal G+V and Copal G+C) and plain Palacos R (control) contaminated either with S. aureus, E. faecalis, S. sanguinis or P.acnes, were analysed for bacterial re-growth in a standardised in-vitro setting. In vitro bacterial growth was not interfered by released antibiotics from sonication of antibiotic loaded PMMA for S. aureus, E. faecalis and S. sanguinis. However, for P. acnes bacterial counts were affected by the released antibiotics as well as by the time delay between sonication and analysis. The in-vitro data suggest sonication to be an easy and sensitive diagnostic modality to detect easy-to-detect bacteria, however, results are alarming for the difficult-to-detect bacteria P. acnes, indicating that further attention and research is necessary to improve the detection of difficult-to-detect bacteria.
format Online
Article
Text
id pubmed-5704003
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Ivyspring International Publisher
record_format MEDLINE/PubMed
spelling pubmed-57040032017-11-29 Influence of Sonication on Bacterial Regrowth from Antibiotic Loaded PMMA Scaffolds - An In-vitro Study Clauss, Martin Laschkolnig, Esther Graf, Susanne Kühn, Klaus-Dieter J Bone Jt Infect Research Paper Periprosthetic joint infection (PJI) is one of the most challenging complications after joint replacement. However, when treated correctly, chances of recovery are good. The most important step in correct diagnosis and management of PJI is the detection of the causative germ. In the last years, the use of sonication in the diagnostic process has become more important. However, this diagnostic methodology has been controversially discussed when used in combination with antibiotic loaded bone cement (PMMA), which is frequently used in joint replacement surgeries. The aim of this study was thus to analyse in vitro bacterial growth in sonication fluid cultures obtained from antibiotic loaded PMMA which were contaminated with various bacterial biofilms. Sonication fluid obtained from antibiotic loaded PMMA (Copal G+V and Copal G+C) and plain Palacos R (control) contaminated either with S. aureus, E. faecalis, S. sanguinis or P.acnes, were analysed for bacterial re-growth in a standardised in-vitro setting. In vitro bacterial growth was not interfered by released antibiotics from sonication of antibiotic loaded PMMA for S. aureus, E. faecalis and S. sanguinis. However, for P. acnes bacterial counts were affected by the released antibiotics as well as by the time delay between sonication and analysis. The in-vitro data suggest sonication to be an easy and sensitive diagnostic modality to detect easy-to-detect bacteria, however, results are alarming for the difficult-to-detect bacteria P. acnes, indicating that further attention and research is necessary to improve the detection of difficult-to-detect bacteria. Ivyspring International Publisher 2017-11-17 /pmc/articles/PMC5704003/ /pubmed/29188173 http://dx.doi.org/10.7150/jbji.22382 Text en © Ivyspring International Publisher This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.
spellingShingle Research Paper
Clauss, Martin
Laschkolnig, Esther
Graf, Susanne
Kühn, Klaus-Dieter
Influence of Sonication on Bacterial Regrowth from Antibiotic Loaded PMMA Scaffolds - An In-vitro Study
title Influence of Sonication on Bacterial Regrowth from Antibiotic Loaded PMMA Scaffolds - An In-vitro Study
title_full Influence of Sonication on Bacterial Regrowth from Antibiotic Loaded PMMA Scaffolds - An In-vitro Study
title_fullStr Influence of Sonication on Bacterial Regrowth from Antibiotic Loaded PMMA Scaffolds - An In-vitro Study
title_full_unstemmed Influence of Sonication on Bacterial Regrowth from Antibiotic Loaded PMMA Scaffolds - An In-vitro Study
title_short Influence of Sonication on Bacterial Regrowth from Antibiotic Loaded PMMA Scaffolds - An In-vitro Study
title_sort influence of sonication on bacterial regrowth from antibiotic loaded pmma scaffolds - an in-vitro study
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5704003/
https://www.ncbi.nlm.nih.gov/pubmed/29188173
http://dx.doi.org/10.7150/jbji.22382
work_keys_str_mv AT claussmartin influenceofsonicationonbacterialregrowthfromantibioticloadedpmmascaffoldsaninvitrostudy
AT laschkolnigesther influenceofsonicationonbacterialregrowthfromantibioticloadedpmmascaffoldsaninvitrostudy
AT grafsusanne influenceofsonicationonbacterialregrowthfromantibioticloadedpmmascaffoldsaninvitrostudy
AT kuhnklausdieter influenceofsonicationonbacterialregrowthfromantibioticloadedpmmascaffoldsaninvitrostudy