Cargando…
A Small Molecule Inhibitor of the β-Catenin-TCF4 Interaction Suppresses Colorectal Cancer Growth In Vitro and In Vivo
Colorectal cancer is associated with aberrant activation of the Wnt pathway. β-Catenin plays essential roles in the Wnt pathway by interacting with T-cell factor 4 (TCF4) to transcribe oncogenes. We synthesized a small molecule, referred to as HI-B1, and evaluated signaling changes and biological co...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5704052/ https://www.ncbi.nlm.nih.gov/pubmed/29033371 http://dx.doi.org/10.1016/j.ebiom.2017.09.029 |
Sumario: | Colorectal cancer is associated with aberrant activation of the Wnt pathway. β-Catenin plays essential roles in the Wnt pathway by interacting with T-cell factor 4 (TCF4) to transcribe oncogenes. We synthesized a small molecule, referred to as HI-B1, and evaluated signaling changes and biological consequences induced by the compound. HI-B1 inhibited β-catenin/TCF4 luciferase activity and preferentially caused apoptosis of cancer cells in which the survival is dependent on β-catenin. The formation of the β-catenin/TCF4 complex was disrupted by HI-B1 due to the direct interaction of HI-B1 with β-catenin. Colon cancer patient-derived xenograft (PDX) studies showed that a tumor with higher levels of β-catenin expression was more sensitive to HI-B1 treatment, compared to a tumor with lower expression levels of β-catenin. The different sensitivities of PDX tumors to HI-B1 were dependent on the β-catenin expression level and potentially could be further exploited for biomarker development and therapeutic applications against colon cancer. |
---|