Cargando…
Spatial and temporal expression of Smad signaling members during the development of mandibular condylar cartilage
The present study aimed to explore the underlying developmental mechanism of mothers against decapentaplegic homolog (Smad) signaling in the development of mandibular condylar cartilage. To achieve this, the expression levels of Smad2, 3, 4 and 7, and phosphorylated Smad2/3 were investigated at diff...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5704254/ https://www.ncbi.nlm.nih.gov/pubmed/29201201 http://dx.doi.org/10.3892/etm.2017.5186 |
_version_ | 1783281853648601088 |
---|---|
author | Xiao, Di Wang, Ru Hu, Jing Quan, Huixin |
author_facet | Xiao, Di Wang, Ru Hu, Jing Quan, Huixin |
author_sort | Xiao, Di |
collection | PubMed |
description | The present study aimed to explore the underlying developmental mechanism of mothers against decapentaplegic homolog (Smad) signaling in the development of mandibular condylar cartilage. To achieve this, the expression levels of Smad2, 3, 4 and 7, and phosphorylated Smad2/3 were investigated at different time points in developing mandibular condylar cartilage. Mandibular condyles from C57BL/6J mice were dissected at the prenatal and postnatal stages. Serial sections were made and the distributions of Smad proteins were examined using immunohistochemical techniques intermittently between day 14.5 of gestation and postnatal day 7. All Smad proteins examined in the present study were expressed in the condylar blastema and during early chondrogenesis. At the postnatal stage, Smad2 and 4 were localized in proliferative and mineralized hypertrophic chondrocytes. Smad3 and 7 were expressed in proliferative and hypertrophic chondrocytes, including pre-hypertrophic and mineralized hypertrophic chondrocytes. Later, positive immunoreactivity of Smad3 reduced at postnatal day 7. A similar expression pattern to Smad3 was observed for p-Smad2/3, but p-Smad2/3 was located in the nuclei of proliferative chondrocytes. These results suggest that Smad signaling members are involved in the development of mandibular condylar cartilage. In addition, the spatial and temporal expression of these Smads indicate that Smad signaling is involved in regulating the differentiation of chondrocytes and endochondral ossification, in order to maintain normal chondrogenesis and morphogenesis of mandibular condylar cartilage. |
format | Online Article Text |
id | pubmed-5704254 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-57042542017-11-30 Spatial and temporal expression of Smad signaling members during the development of mandibular condylar cartilage Xiao, Di Wang, Ru Hu, Jing Quan, Huixin Exp Ther Med Articles The present study aimed to explore the underlying developmental mechanism of mothers against decapentaplegic homolog (Smad) signaling in the development of mandibular condylar cartilage. To achieve this, the expression levels of Smad2, 3, 4 and 7, and phosphorylated Smad2/3 were investigated at different time points in developing mandibular condylar cartilage. Mandibular condyles from C57BL/6J mice were dissected at the prenatal and postnatal stages. Serial sections were made and the distributions of Smad proteins were examined using immunohistochemical techniques intermittently between day 14.5 of gestation and postnatal day 7. All Smad proteins examined in the present study were expressed in the condylar blastema and during early chondrogenesis. At the postnatal stage, Smad2 and 4 were localized in proliferative and mineralized hypertrophic chondrocytes. Smad3 and 7 were expressed in proliferative and hypertrophic chondrocytes, including pre-hypertrophic and mineralized hypertrophic chondrocytes. Later, positive immunoreactivity of Smad3 reduced at postnatal day 7. A similar expression pattern to Smad3 was observed for p-Smad2/3, but p-Smad2/3 was located in the nuclei of proliferative chondrocytes. These results suggest that Smad signaling members are involved in the development of mandibular condylar cartilage. In addition, the spatial and temporal expression of these Smads indicate that Smad signaling is involved in regulating the differentiation of chondrocytes and endochondral ossification, in order to maintain normal chondrogenesis and morphogenesis of mandibular condylar cartilage. D.A. Spandidos 2017-11 2017-09-22 /pmc/articles/PMC5704254/ /pubmed/29201201 http://dx.doi.org/10.3892/etm.2017.5186 Text en Copyright: © Xiao et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Xiao, Di Wang, Ru Hu, Jing Quan, Huixin Spatial and temporal expression of Smad signaling members during the development of mandibular condylar cartilage |
title | Spatial and temporal expression of Smad signaling members during the development of mandibular condylar cartilage |
title_full | Spatial and temporal expression of Smad signaling members during the development of mandibular condylar cartilage |
title_fullStr | Spatial and temporal expression of Smad signaling members during the development of mandibular condylar cartilage |
title_full_unstemmed | Spatial and temporal expression of Smad signaling members during the development of mandibular condylar cartilage |
title_short | Spatial and temporal expression of Smad signaling members during the development of mandibular condylar cartilage |
title_sort | spatial and temporal expression of smad signaling members during the development of mandibular condylar cartilage |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5704254/ https://www.ncbi.nlm.nih.gov/pubmed/29201201 http://dx.doi.org/10.3892/etm.2017.5186 |
work_keys_str_mv | AT xiaodi spatialandtemporalexpressionofsmadsignalingmembersduringthedevelopmentofmandibularcondylarcartilage AT wangru spatialandtemporalexpressionofsmadsignalingmembersduringthedevelopmentofmandibularcondylarcartilage AT hujing spatialandtemporalexpressionofsmadsignalingmembersduringthedevelopmentofmandibularcondylarcartilage AT quanhuixin spatialandtemporalexpressionofsmadsignalingmembersduringthedevelopmentofmandibularcondylarcartilage |