Cargando…

Laser-modified titanium surfaces enhance the osteogenic differentiation of human mesenchymal stem cells

BACKGROUND: Titanium surfaces have been modified by various approaches with the aim of improving the stimulation of osseointegration. Laser beam (Yb-YAG) treatment is a controllable and flexible approach to modifying surfaces. It creates a complex surface topography with micro and nano-scaled patter...

Descripción completa

Detalles Bibliográficos
Autores principales: Bressel, Tatiana A. B., de Queiroz, Jana Dara Freires, Gomes Moreira, Susana Margarida, da Fonseca, Jéssyca T., Filho, Edson A., Guastaldi, Antônio Carlos, Batistuzzo de Medeiros, Silvia Regina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5704576/
https://www.ncbi.nlm.nih.gov/pubmed/29179738
http://dx.doi.org/10.1186/s13287-017-0717-9
Descripción
Sumario:BACKGROUND: Titanium surfaces have been modified by various approaches with the aim of improving the stimulation of osseointegration. Laser beam (Yb-YAG) treatment is a controllable and flexible approach to modifying surfaces. It creates a complex surface topography with micro and nano-scaled patterns, and an oxide layer that can improve the osseointegration of implants, increasing their usefulness as bone implant materials. METHODS: Laser beam irradiation at various fluences (132, 210, or 235 J/cm(2)) was used to treat commercially pure titanium discs to create complex surface topographies. The titanium discs were investigated by scanning electron microscopy, X-ray diffraction, and measurement of contact angles. The surface generated at a fluence of 235 J/cm(2) was used in the biological assays. The behavior of mesenchymal stem cells from an umbilical cord vein was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, a mineralization assay, and an alkaline phosphatase activity assay and by carrying out a quantitative real-time polymerase chain reaction for osteogenic markers. CHO-k1 cells were also exposed to titanium discs in the MTT assay. RESULTS: The best titanium surface was that produced by laser beam irradiation at 235 J/cm(2) fluence. Cell proliferation analysis revealed that the CHO-k1 and mesenchymal stem cells behaved differently. The laser-processed titanium surface increased the proliferation of CHO-k1 cells, reduced the proliferation of mesenchymal stem cells, upregulated the expression of the osteogenic markers, and enhanced alkaline phosphatase activity. CONCLUSIONS: The laser-treated titanium surface modulated cellular behavior depending on the cell type, and stimulated osteogenic differentiation. This evidence supports the potential use of laser-processed titanium surfaces as bone implant materials, and their use in regenerative medicine could promote better outcomes.