Cargando…
Ensemble machine learning and forecasting can achieve 99% uptime for rural handpumps
Broken water pumps continue to impede efforts to deliver clean and economically-viable water to the global poor. The literature has demonstrated that customers’ health benefits and willingness to pay for clean water are best realized when clean water infrastructure performs extremely well (>99% u...
Autores principales: | Wilson, Daniel L., Coyle, Jeremy R., Thomas, Evan A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5705089/ https://www.ncbi.nlm.nih.gov/pubmed/29182673 http://dx.doi.org/10.1371/journal.pone.0188808 |
Ejemplares similares
-
Uptime
por: Campbell, John, et al.
Publicado: (2015) -
Understanding handpump sustainability: Determinants of rural water source functionality in the Greater Afram Plains region of Ghana
por: Fisher, Michael B., et al.
Publicado: (2015) -
Guaranteeing uptime at worl's largest particle physics lab
por: Brodkin, Jon
Publicado: (2007) -
Forecasting Corn Yield With Machine Learning Ensembles
por: Shahhosseini, Mohsen, et al.
Publicado: (2020) -
Sand dam contributions to year-round water security monitored through telemetered handpump data
por: Ritchie, Hannah, et al.
Publicado: (2023)