Cargando…

Branched Pd@Rh core@shell nanocrystals with exposed Rh {100} facets: an effective electrocatalyst for hydrazine electro-oxidation

Shape control of noble metal (NM) nanocrystals (NCs) is of great importance for improving their electrocatalytic performance. In this report, branched Pd@Rh core@shell NCs that have right square prism-like arms with preferential exposure of Rh {100} facets (denoted as b-Pd@Rh-NCs thereafter) are syn...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Guojing, Jing, Shengchang, Tan, Yiwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5705708/
https://www.ncbi.nlm.nih.gov/pubmed/29184136
http://dx.doi.org/10.1038/s41598-017-16776-6
Descripción
Sumario:Shape control of noble metal (NM) nanocrystals (NCs) is of great importance for improving their electrocatalytic performance. In this report, branched Pd@Rh core@shell NCs that have right square prism-like arms with preferential exposure of Rh {100} facets (denoted as b-Pd@Rh-NCs thereafter) are synthesized and utilized as an electrocatalyst for the hydrazine electrooxidation (HEO) in acidic and alkaline electrolytes. The b-Pd@Rh-NCs are obtained by the heteroepitaxial growth of Rh on the pre-formed branched Pd NCs (denoted as b-Pd-NCs thereafter) core in the presence of poly(vinyl pyrrolidone) (PVP) and bromide ions. A comparative analysis of the voltammetric data for the HEO shows a higher activity on the b-Pd@Rh-NCs exposed with Rh {100} faces than on Rh black, the b-Pd-NCs, and Pd black in acid and alkaline solutions, indicating a structure sensitivity of the reaction. Analysis of the products from the b-Pd@Rh-NCs catalysed HEO reveals a very high hydrazine fuel efficiency, as determined by on-line differential electrochemical mass spectrometry (DEMS).