Cargando…
Abnormal carbohydrate metabolism in a canine model for muscular dystrophy
The canine golden retriever muscular dystrophy (GRMD) model is the best animal model for studying Duchenne muscular dystrophy in humans. Considering the importance of glucose metabolism in the muscles, the existence of metabolic and endocrine alterations in a wide range of muscular dystrophies, and...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5705810/ https://www.ncbi.nlm.nih.gov/pubmed/29209496 http://dx.doi.org/10.1017/jns.2017.59 |
Sumario: | The canine golden retriever muscular dystrophy (GRMD) model is the best animal model for studying Duchenne muscular dystrophy in humans. Considering the importance of glucose metabolism in the muscles, the existence of metabolic and endocrine alterations in a wide range of muscular dystrophies, and the pre-existing relationship between blood insulin concentration and muscular atrophy, the present study aimed to evaluate the postprandial glucose and insulin response in GRMD dogs. A total of eighteen golden retriever dogs were randomly distributed into three experimental groups: healthy/control (G1), female GRMD carriers (G2), and male dogs affected by GRMD (G3). Higher plasma resting glucose levels (P = 0·0047) were seen in G2 and G3 compared with G1, as was the case for minimum (P = <0·0001), mean (P = 0·0002) and maximum (P = 0·0359) glucose values for G3 compared with G1. Fructosamine concentrations were in accordance with reference values found in the literature for dogs. Insulin levels were lower in G3 compared with G1 (P = 0·0065); however, there was no evidence of insulin resistance according to the homeostasis model assessment index values obtained. As for the evaluation of postprandial responses, fluctuations of glucose (P = 0·0007) and insulin (P = 0·0149) were observed in G1 and G2, while in G3 the values remained constant. The results allowed us to identify metabolic changes related to carbohydrate metabolism in GRMD dogs, highlighting the importance of adequate food management for these animals. |
---|