Cargando…
Underwater Inherent Optical Properties Estimation Using a Depth Aided Deep Neural Network
Underwater inherent optical properties (IOPs) are the fundamental clues to many research fields such as marine optics, marine biology, and underwater vision. Currently, beam transmissometers and optical sensors are considered as the ideal IOPs measuring methods. But these methods are inflexible and...
Autores principales: | Yu, Zhibin, Wang, Yubo, Zheng, Bing, Zheng, Haiyong, Wang, Nan, Gu, Zhaorui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5706080/ https://www.ncbi.nlm.nih.gov/pubmed/29270196 http://dx.doi.org/10.1155/2017/8351232 |
Ejemplares similares
-
Unpaired Underwater Image Synthesis with a Disentangled Representation for Underwater Depth Map Prediction
por: Zhao, Qi, et al.
Publicado: (2021) -
Automatic plankton image classification combining multiple view features via multiple kernel learning
por: Zheng, Haiyong, et al.
Publicado: (2017) -
An Optical Fibre Depth (Pressure) Sensor for Remote Operated Vehicles in Underwater Applications
por: Duraibabu, Dinesh Babu, et al.
Publicado: (2017) -
Recovering Depth from Still Images for Underwater Dehazing Using Deep Learning
por: Pérez, Javier, et al.
Publicado: (2020) -
Object Detection and Depth Estimation Approach Based on Deep Convolutional Neural Networks †
por: Wang, Huai-Mu, et al.
Publicado: (2021)