Cargando…

Selective Laser Sintering of Porous Silica Enabled by Carbon Additive

The aim of this study is to investigate the possibility of a freeform fabrication of porous ceramic parts through selective laser sintering (SLS). SLS was proposed to manufacture ceramic green parts because this additive manufacturing technique can be used to fabricate three-dimensional objects dire...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Shuai, Li, Liqun, Lu, Li, Fuh, Jerry Ying Hsi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5706260/
https://www.ncbi.nlm.nih.gov/pubmed/29144425
http://dx.doi.org/10.3390/ma10111313
Descripción
Sumario:The aim of this study is to investigate the possibility of a freeform fabrication of porous ceramic parts through selective laser sintering (SLS). SLS was proposed to manufacture ceramic green parts because this additive manufacturing technique can be used to fabricate three-dimensional objects directly without a mold, and the technique has the capability of generating porous ceramics with controlled porosity. However, ceramic printing has not yet fully achieved its 3D fabrication capabilities without using polymer binder. Except for the limitations of high melting point, brittleness, and low thermal shock resistance from ceramic material properties, the key obstacle lies in the very poor absorptivity of oxide ceramics to fiber laser, which is widely installed in commercial SLS equipment. An alternative solution to overcome the poor laser absorptivity via improving material compositions is presented in this study. The positive effect of carbon additive on the absorptivity of silica powder to fiber laser is discussed. To investigate the capabilities of the SLS process, 3D porous silica structures were successfully prepared and characterized.