Cargando…
Understanding disciplinary vocabularies using a full-text enabled domain-independent term extraction approach
Publication metadata help deliver rich analyses of scholarly communication. However, research concepts and ideas are more effectively expressed through unstructured fields such as full texts. Thus, the goals of this paper are to employ a full-text enabled method to extract terms relevant to discipli...
Autores principales: | Yan, Erjia, Williams, Jake, Chen, Zheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5706669/ https://www.ncbi.nlm.nih.gov/pubmed/29186141 http://dx.doi.org/10.1371/journal.pone.0187762 |
Ejemplares similares
-
Text Feature Extraction for Public English Vocabulary Based on Wavelet Transform
por: Ye, Di, et al.
Publicado: (2022) -
Retracted: Text Feature Extraction for Public English Vocabulary Based on Wavelet Transform
por: Methods in Medicine, Computational and Mathematical
Publicado: (2023) -
Facilitating the development of controlled vocabularies for metabolomics technologies with text mining
por: Spasić, Irena, et al.
Publicado: (2008) -
Terms: Vocabulary, Taxonomy, and Ontology
por: McComb, Dave
Publicado: (2003) -
Building a protein name dictionary from full text: a machine learning term extraction approach
por: Shi, Lei, et al.
Publicado: (2005)