Cargando…

The prevalence of kilometer-scale heterogeneity in the source region of MORB upper mantle

The source regions of mid-ocean ridge basalts (MORB) are heterogeneous, consisting of chemically and lithologically distinct domains of variable size. Partial melting of such heterogeneous mantle sources gives rise to diverse isotopic compositions of MORB and abyssal peridotites. Variations in radio...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Boda, Liang, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5706740/
https://www.ncbi.nlm.nih.gov/pubmed/29202030
http://dx.doi.org/10.1126/sciadv.1701872
Descripción
Sumario:The source regions of mid-ocean ridge basalts (MORB) are heterogeneous, consisting of chemically and lithologically distinct domains of variable size. Partial melting of such heterogeneous mantle sources gives rise to diverse isotopic compositions of MORB and abyssal peridotites. Variations in radiogenic isotope ratios in MORB are attributed to mixing of melts derived from enriched and depleted mantle components. However, melt mixing alone cannot fully account for the difference between the average (143)Nd/(144)Nd in abyssal peridotites and their spatially associated MORB. We show that the more depleted Nd isotope composition in abyssal peridotites is a natural consequence of melt migration–induced mixing or smearing in the melting column. Sub-kilometer scale enriched mantle components or heterogeneities are significantly damped or homogenized in both the residue and erupted melt during their transit through the melting region. Heterogeneities with larger size and higher incompatible trace element abundance are more resistive to the mixing processes. The size-sensitive mixing depends on a parameter called the enrichment strength, which is the product of the heterogeneity size and the ratio between incompatible trace element abundance in the enriched and depleted mantle sources. Observed Nd-Hf isotope variations in MORB and abyssal peridotites can be reproduced if the enrichment strength is 20 to 60 km. These heterogeneities could be on the kilometer scale and have similar isotope ratios to but less incompatible trace element abundances than recycled oceanic crust.