Cargando…

Predicting new indications of compounds with a network pharmacology approach: Liuwei Dihuang Wan as a case study

With the ever increasing cost and time required for drug development, new strategies for drug development are highly demanded, whereas repurposing old drugs has attracted much attention in drug discovery. In this paper, we introduce a new network pharmacology approach, namely PINA, to predict potent...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yin-Ying, Bai, Hong, Zhang, Run-Zhi, Yan, Hong, Ning, Kang, Zhao, Xing-Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5706847/
https://www.ncbi.nlm.nih.gov/pubmed/29212201
http://dx.doi.org/10.18632/oncotarget.21398
Descripción
Sumario:With the ever increasing cost and time required for drug development, new strategies for drug development are highly demanded, whereas repurposing old drugs has attracted much attention in drug discovery. In this paper, we introduce a new network pharmacology approach, namely PINA, to predict potential novel indications of old drugs based on the molecular networks affected by drugs and associated with diseases. Benchmark results on FDA approved drugs have shown the superiority of PINA over traditional computational approaches in identifying new indications of old drugs. We further extend PINA to predict the novel indications of Traditional Chinese Medicines (TCMs) with Liuwei Dihuang Wan (LDW) as a case study. The predicted indications, including immune system disorders and tumor, are validated by expert knowledge and evidences from literature, demonstrating the effectiveness of our proposed computational approach.