Cargando…
Regulation of DNA replication-coupled histone gene expression
The expression of core histone genes is cell cycle regulated. Large amounts of histones are required to restore duplicated chromatin during S phase when DNA replication occurs. Over-expression and excess accumulation of histones outside S phase are toxic to cells and therefore cells need to restrict...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5706932/ https://www.ncbi.nlm.nih.gov/pubmed/29212286 http://dx.doi.org/10.18632/oncotarget.21887 |
Sumario: | The expression of core histone genes is cell cycle regulated. Large amounts of histones are required to restore duplicated chromatin during S phase when DNA replication occurs. Over-expression and excess accumulation of histones outside S phase are toxic to cells and therefore cells need to restrict histone expression to S phase. Misregulation of histone gene expression leads to defects in cell cycle progression, genome stability, DNA damage response and transcriptional regulation. Here, we discussed the factors involved in histone gene regulation as well as the underlying mechanism. Understanding the histone regulation mechanism will shed lights on elucidating the side effects of certain cancer chemotherapeutic drugs and developing potential biomarkers for tumor cells. |
---|