Cargando…
PARK2 loss promotes cancer progression via redox-mediated inactivation of PTEN
Cancer and Parkinson disease (PD) derive from distinct alterations in cellular processes, yet there are pathogenic mutations that are unequivocally linked to both diseases. Here we expand on our recent findings that loss of parkin RBR E3 ubiquitin protein ligase (PRKN, best known as PARK2)—which is...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5706935/ https://www.ncbi.nlm.nih.gov/pubmed/29209642 http://dx.doi.org/10.1080/23723556.2017.1329692 |
Sumario: | Cancer and Parkinson disease (PD) derive from distinct alterations in cellular processes, yet there are pathogenic mutations that are unequivocally linked to both diseases. Here we expand on our recent findings that loss of parkin RBR E3 ubiquitin protein ligase (PRKN, best known as PARK2)—which is genetically linked to PD—promotes cancer progression via redox-mediated inactivation of phosphatase and tensin homolog (PTEN) by S-nitrosylation. |
---|