Cargando…
CD109 released from human bone marrow mesenchymal stem cells attenuates TGF-β-induced epithelial to mesenchymal transition and stemness of squamous cell carcinoma
Although there is increasing evidence that human bone marrow mesenchymal stem cells (hBM-MSCs) play an important role in cancer progression, the underlying mechanisms are poorly understood. Transforming growth factor β (TGF-β) is an important pro-metastatic cytokine. We have previously shown that CD...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707049/ https://www.ncbi.nlm.nih.gov/pubmed/29221155 http://dx.doi.org/10.18632/oncotarget.21067 |
Sumario: | Although there is increasing evidence that human bone marrow mesenchymal stem cells (hBM-MSCs) play an important role in cancer progression, the underlying mechanisms are poorly understood. Transforming growth factor β (TGF-β) is an important pro-metastatic cytokine. We have previously shown that CD109, a glycosylphosphatidylinositol-anchored protein, is a TGF-β co-receptor and a strong inhibitor of TGF-β signalling. Moreover, CD109 can be released from the cell surface. In the current study, we examined whether hBM-MSCs regulate the malignant properties of squamous cell carcinoma cells, and whether CD109 plays a role in mediating the effect of hBM-MSCs on cancer cells. Here we show that hBM-MSC-conditioned medium decreases proliferation and induces apoptosis in human squamous carcinoma cell lines, A431 and FaDu. Importantly, hBM-MSC-conditioned medium markedly suppresses markers of epithelial-to-mesenchymal transition and stemness, and concomitantly decreases cell migration, invasion, and spheroid formation in A431 and FaDu cells. In addition, knockdown of CD109 in hBM-MSCs abrogates the anti-malignant activity of hBM-MSC-conditioned medium on A431 and FaDu cells. Furthermore, overexpression of CD109 in A431 cells decreases their malignant traits. Together, our findings suggest that hBM-MSCs inhibit the malignant traits of squamous cell carcinoma cells by a paracrine effect via released factors and that CD109 released from hBM-MSCs, at least partially, mediates these effects. |
---|