Cargando…

Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode

Defects are important features in two-dimensional (2D) materials that have a strong influence on their chemical and physical properties. Through the enhanced chemical reactivity at defect sites (point defects, line defects, etc.), one can selectively functionalize 2D materials via chemical reactions...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Jin, Liao, Lei, Gong, Yongji, Li, Yanbin, Shi, Feifei, Pei, Allen, Sun, Jie, Zhang, Rufan, Kong, Biao, Subbaraman, Ram, Christensen, Jake, Cui, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707176/
https://www.ncbi.nlm.nih.gov/pubmed/29202031
http://dx.doi.org/10.1126/sciadv.aao3170
Descripción
Sumario:Defects are important features in two-dimensional (2D) materials that have a strong influence on their chemical and physical properties. Through the enhanced chemical reactivity at defect sites (point defects, line defects, etc.), one can selectively functionalize 2D materials via chemical reactions and thereby tune their physical properties. We demonstrate the selective atomic layer deposition of LiF on defect sites of h-BN prepared by chemical vapor deposition. The LiF deposits primarily on the line and point defects of h-BN, thereby creating seams that hold the h-BN crystallites together. The chemically and mechanically stable hybrid LiF/h-BN film successfully suppresses lithium dendrite formation during both the initial electrochemical deposition onto a copper foil and the subsequent cycling. The protected lithium electrodes exhibit good cycling behavior with more than 300 cycles at relatively high coulombic efficiency (>95%) in an additive-free carbonate electrolyte.