Cargando…
Comparison of machine learning and semi-quantification algorithms for (I123)FP-CIT classification: the beginning of the end for semi-quantification?
BACKGROUND: Semi-quantification methods are well established in the clinic for assisted reporting of (I123) Ioflupane images. Arguably, these are limited diagnostic tools. Recent research has demonstrated the potential for improved classification performance offered by machine learning algorithms. A...
Autores principales: | Taylor, Jonathan Christopher, Fenner, John Wesley |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707214/ https://www.ncbi.nlm.nih.gov/pubmed/29188397 http://dx.doi.org/10.1186/s40658-017-0196-1 |
Ejemplares similares
-
[(123)I]FP-CIT ENC-DAT normal database: the impact of the reconstruction and quantification methods
por: Tossici-Bolt, Livia, et al.
Publicado: (2017) -
Computer-aided diagnosis for ((123)I)FP-CIT imaging: impact on clinical reporting
por: Taylor, Jonathan Christopher, et al.
Publicado: (2018) -
Classification of degenerative parkinsonism subtypes by support-vector-machine analysis and striatal (123)I-FP-CIT indices
por: Nicastro, Nicolas, et al.
Publicado: (2019) -
Clinicopathological and (123)I‐FP‐CIT SPECT correlations in patients with dementia
por: Jung, Youngsin, et al.
Publicado: (2018) -
Semi-quantitative analysis of visually normal (123)I-FP-CIT across three large databases revealed no difference between control and patients
por: Flaus, Anthime, et al.
Publicado: (2023)