Cargando…

Data driven inference for the repulsive exponent of the Lennard-Jones potential in molecular dynamics simulations

The Lennard-Jones (LJ) potential is a cornerstone of Molecular Dynamics (MD) simulations and among the most widely used computational kernels in science. The LJ potential models atomistic attraction and repulsion with century old prescribed parameters (q = 6, p = 12, respectively), originally relate...

Descripción completa

Detalles Bibliográficos
Autores principales: Kulakova, Lina, Arampatzis, Georgios, Angelikopoulos, Panagiotis, Hadjidoukas, Panagiotis, Papadimitriou, Costas, Koumoutsakos, Petros
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707428/
https://www.ncbi.nlm.nih.gov/pubmed/29185461
http://dx.doi.org/10.1038/s41598-017-16314-4
Descripción
Sumario:The Lennard-Jones (LJ) potential is a cornerstone of Molecular Dynamics (MD) simulations and among the most widely used computational kernels in science. The LJ potential models atomistic attraction and repulsion with century old prescribed parameters (q = 6, p = 12, respectively), originally related by a factor of two for simplicity of calculations. We propose the inference of the repulsion exponent through Hierarchical Bayesian uncertainty quantification We use experimental data of the radial distribution function and dimer interaction energies from quantum mechanics simulations. We find that the repulsion exponent p ≈ 6.5 provides an excellent fit for the experimental data of liquid argon, for a range of thermodynamic conditions, as well as for saturated argon vapour. Calibration using the quantum simulation data did not provide a good fit in these cases. However, values p ≈ 12.7 obtained by dimer quantum simulations are preferred for the argon gas while lower values are promoted by experimental data. These results show that the proposed LJ 6-p potential applies to a wider range of thermodynamic conditions, than the classical LJ 6-12 potential. We suggest that calibration of the repulsive exponent in the LJ potential widens the range of applicability and accuracy of MD simulations.