Cargando…

III-defined concepts in chemistry: rigid force constants vs. compliance constants as bond strength descriptors for the triple bond in diboryne

In a recent publication, the interpretation of Braunschweig's diboryne NHC–BB–NHC as a true triple bond is questioned. The analysis by Köppe and Schnöckel is based, inter alia, on the calculation of rigid coupling force constants. Nevertheless, since it is known for a long time that the use of...

Descripción completa

Detalles Bibliográficos
Autor principal: Grunenberg, Jörg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707508/
https://www.ncbi.nlm.nih.gov/pubmed/29218174
http://dx.doi.org/10.1039/c5sc01322d
Descripción
Sumario:In a recent publication, the interpretation of Braunschweig's diboryne NHC–BB–NHC as a true triple bond is questioned. The analysis by Köppe and Schnöckel is based, inter alia, on the calculation of rigid coupling force constants. Nevertheless, since it is known for a long time that the use of rigid force constants as bond strength descriptors is by no means straightforward, we recomputed the rigid force constants for a model diboryne, applying different coordinate systems and compared the values with the relaxed force constants (generalized compliance constants, GCC). In contrast with the results by Schnöckel and Köppe, the true coupling between the boron–boron bond and the boron–carbon bond, that is, after the elimination of all numerical artifacts, is negligible (f(BB/BC) = –0.003).