Cargando…

A Carbon Nanotube Optical Reporter Maps Endolysosomal Lipid Flux

[Image: see text] Lipid accumulation within the lumen of endolysosomal vesicles is observed in various pathologies including atherosclerosis, liver disease, neurological disorders, lysosomal storage disorders, and cancer. Current methods cannot measure lipid flux specifically within the lysosomal lu...

Descripción completa

Detalles Bibliográficos
Autores principales: Jena, Prakrit V., Roxbury, Daniel, Galassi, Thomas V., Akkari, Leila, Horoszko, Christopher P., Iaea, David B., Budhathoki-Uprety, Januka, Pipalia, Nina, Haka, Abigail S., Harvey, Jackson D., Mittal, Jeetain, Maxfield, Frederick R., Joyce, Johanna A., Heller, Daniel A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707631/
https://www.ncbi.nlm.nih.gov/pubmed/28898055
http://dx.doi.org/10.1021/acsnano.7b04743
_version_ 1783282473425174528
author Jena, Prakrit V.
Roxbury, Daniel
Galassi, Thomas V.
Akkari, Leila
Horoszko, Christopher P.
Iaea, David B.
Budhathoki-Uprety, Januka
Pipalia, Nina
Haka, Abigail S.
Harvey, Jackson D.
Mittal, Jeetain
Maxfield, Frederick R.
Joyce, Johanna A.
Heller, Daniel A.
author_facet Jena, Prakrit V.
Roxbury, Daniel
Galassi, Thomas V.
Akkari, Leila
Horoszko, Christopher P.
Iaea, David B.
Budhathoki-Uprety, Januka
Pipalia, Nina
Haka, Abigail S.
Harvey, Jackson D.
Mittal, Jeetain
Maxfield, Frederick R.
Joyce, Johanna A.
Heller, Daniel A.
author_sort Jena, Prakrit V.
collection PubMed
description [Image: see text] Lipid accumulation within the lumen of endolysosomal vesicles is observed in various pathologies including atherosclerosis, liver disease, neurological disorders, lysosomal storage disorders, and cancer. Current methods cannot measure lipid flux specifically within the lysosomal lumen of live cells. We developed an optical reporter, composed of a photoluminescent carbon nanotube of a single chirality, that responds to lipid accumulation via modulation of the nanotube’s optical band gap. The engineered nanomaterial, composed of short, single-stranded DNA and a single nanotube chirality, localizes exclusively to the lumen of endolysosomal organelles without adversely affecting cell viability or proliferation or organelle morphology, integrity, or function. The emission wavelength of the reporter can be spatially resolved from within the endolysosomal lumen to generate quantitative maps of lipid content in live cells. Endolysosomal lipid accumulation in cell lines, an example of drug-induced phospholipidosis, was observed for multiple drugs in macrophages, and measurements of patient-derived Niemann–Pick type C fibroblasts identified lipid accumulation and phenotypic reversal of this lysosomal storage disease. Single-cell measurements using the reporter discerned subcellular differences in equilibrium lipid content, illuminating significant intracellular heterogeneity among endolysosomal organelles of differentiating bone-marrow-derived monocytes. Single-cell kinetics of lipoprotein-derived cholesterol accumulation within macrophages revealed rates that differed among cells by an order of magnitude. This carbon nanotube optical reporter of endolysosomal lipid content in live cells confers additional capabilities for drug development processes and the investigation of lipid-linked diseases.
format Online
Article
Text
id pubmed-5707631
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-57076312017-12-04 A Carbon Nanotube Optical Reporter Maps Endolysosomal Lipid Flux Jena, Prakrit V. Roxbury, Daniel Galassi, Thomas V. Akkari, Leila Horoszko, Christopher P. Iaea, David B. Budhathoki-Uprety, Januka Pipalia, Nina Haka, Abigail S. Harvey, Jackson D. Mittal, Jeetain Maxfield, Frederick R. Joyce, Johanna A. Heller, Daniel A. ACS Nano [Image: see text] Lipid accumulation within the lumen of endolysosomal vesicles is observed in various pathologies including atherosclerosis, liver disease, neurological disorders, lysosomal storage disorders, and cancer. Current methods cannot measure lipid flux specifically within the lysosomal lumen of live cells. We developed an optical reporter, composed of a photoluminescent carbon nanotube of a single chirality, that responds to lipid accumulation via modulation of the nanotube’s optical band gap. The engineered nanomaterial, composed of short, single-stranded DNA and a single nanotube chirality, localizes exclusively to the lumen of endolysosomal organelles without adversely affecting cell viability or proliferation or organelle morphology, integrity, or function. The emission wavelength of the reporter can be spatially resolved from within the endolysosomal lumen to generate quantitative maps of lipid content in live cells. Endolysosomal lipid accumulation in cell lines, an example of drug-induced phospholipidosis, was observed for multiple drugs in macrophages, and measurements of patient-derived Niemann–Pick type C fibroblasts identified lipid accumulation and phenotypic reversal of this lysosomal storage disease. Single-cell measurements using the reporter discerned subcellular differences in equilibrium lipid content, illuminating significant intracellular heterogeneity among endolysosomal organelles of differentiating bone-marrow-derived monocytes. Single-cell kinetics of lipoprotein-derived cholesterol accumulation within macrophages revealed rates that differed among cells by an order of magnitude. This carbon nanotube optical reporter of endolysosomal lipid content in live cells confers additional capabilities for drug development processes and the investigation of lipid-linked diseases. American Chemical Society 2017-09-12 2017-11-28 /pmc/articles/PMC5707631/ /pubmed/28898055 http://dx.doi.org/10.1021/acsnano.7b04743 Text en Copyright © 2017 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Jena, Prakrit V.
Roxbury, Daniel
Galassi, Thomas V.
Akkari, Leila
Horoszko, Christopher P.
Iaea, David B.
Budhathoki-Uprety, Januka
Pipalia, Nina
Haka, Abigail S.
Harvey, Jackson D.
Mittal, Jeetain
Maxfield, Frederick R.
Joyce, Johanna A.
Heller, Daniel A.
A Carbon Nanotube Optical Reporter Maps Endolysosomal Lipid Flux
title A Carbon Nanotube Optical Reporter Maps Endolysosomal Lipid Flux
title_full A Carbon Nanotube Optical Reporter Maps Endolysosomal Lipid Flux
title_fullStr A Carbon Nanotube Optical Reporter Maps Endolysosomal Lipid Flux
title_full_unstemmed A Carbon Nanotube Optical Reporter Maps Endolysosomal Lipid Flux
title_short A Carbon Nanotube Optical Reporter Maps Endolysosomal Lipid Flux
title_sort a carbon nanotube optical reporter maps endolysosomal lipid flux
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707631/
https://www.ncbi.nlm.nih.gov/pubmed/28898055
http://dx.doi.org/10.1021/acsnano.7b04743
work_keys_str_mv AT jenaprakritv acarbonnanotubeopticalreportermapsendolysosomallipidflux
AT roxburydaniel acarbonnanotubeopticalreportermapsendolysosomallipidflux
AT galassithomasv acarbonnanotubeopticalreportermapsendolysosomallipidflux
AT akkarileila acarbonnanotubeopticalreportermapsendolysosomallipidflux
AT horoszkochristopherp acarbonnanotubeopticalreportermapsendolysosomallipidflux
AT iaeadavidb acarbonnanotubeopticalreportermapsendolysosomallipidflux
AT budhathokiupretyjanuka acarbonnanotubeopticalreportermapsendolysosomallipidflux
AT pipalianina acarbonnanotubeopticalreportermapsendolysosomallipidflux
AT hakaabigails acarbonnanotubeopticalreportermapsendolysosomallipidflux
AT harveyjacksond acarbonnanotubeopticalreportermapsendolysosomallipidflux
AT mittaljeetain acarbonnanotubeopticalreportermapsendolysosomallipidflux
AT maxfieldfrederickr acarbonnanotubeopticalreportermapsendolysosomallipidflux
AT joycejohannaa acarbonnanotubeopticalreportermapsendolysosomallipidflux
AT hellerdaniela acarbonnanotubeopticalreportermapsendolysosomallipidflux