Cargando…

Prevalence, antimicrobial susceptibility and risk factors associated with non-typhoidal Salmonella on Ugandan layer hen farms

BACKGROUND: Non-typhoidal Salmonella (NTS) are among the leading global foodborne pathogens and a significant public health threat. Their occurrence in animal reservoirs and their susceptibilities to commonly used antimicrobials are poorly understood in developing countries. The aim of this study wa...

Descripción completa

Detalles Bibliográficos
Autores principales: Odoch, Terence, Wasteson, Yngvild, L’Abée-Lund, Trine, Muwonge, Adrian, Kankya, Clovice, Nyakarahuka, Luke, Tegule, Sarah, Skjerve, Eystein
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707898/
https://www.ncbi.nlm.nih.gov/pubmed/29187195
http://dx.doi.org/10.1186/s12917-017-1291-1
Descripción
Sumario:BACKGROUND: Non-typhoidal Salmonella (NTS) are among the leading global foodborne pathogens and a significant public health threat. Their occurrence in animal reservoirs and their susceptibilities to commonly used antimicrobials are poorly understood in developing countries. The aim of this study was to estimate the prevalence, determine antimicrobial susceptibility and identify risk factors associated with NTS presence in laying hen farms in Uganda through a cross-sectional study. RESULTS: Pooled faecal samples were collected from 237 laying hen farms and these were analysed for NTS following standard laboratory procedures. In total, 49 farms (20.7%; 95% Confidence interval (CI): 15.6–25.6%) were positive for NTS presence. Altogether, ten Salmonella serotypes were identified among the confirmed 78 isolates, and the predominant serotypes were Salmonella Newport (30.8%), S. Hadar (14.1%), S. Aberdeen (12.8%), S. Heidelberg (12.8%), and S. Bolton (12.8%). Phenotypic antimicrobial resistance was detected in 45(57.7%) of the isolates and the highest resistance was against ciprofloxacin (50.0%) followed by sulphonamides (26.9%) and sulphamethoxazole/trimethoprim (7.7%). Resistance was significantly associated with sampled districts (p = 0.034). Resistance to three or more drugs, multi-drug resistance (MDR) was detected in 12 (15.4%) of the isolates, 9 (75%) of these were from Wakiso district. A multivariable logistic model identified large farm size (OR = 7.0; 95% CI: 2.5–19.8) and the presence of other animal species on the farm (OR = 5.9; 95% CI: 2.1–16.1) as risk factors for NTS prevalence on farms. Having a separate house for birds newly brought to the farms was found to be protective (OR = 0,4; 95% CI: 0.2–0.8). CONCLUSION: This study has highlighted a high prevalence and diversity of NTS species in laying hen farms in Uganda and identified associated risk factors. In addition, it has demonstrated high levels of antimicrobial resistance in isolates of NTS. This could be because of overuse or misuse of antimicrobials in poultry production. Also importantly, the insights provided in this study justifies a strong case for strengthening One Health practices and this will contribute to the development of NTS control strategies at local, national and international levels. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12917-017-1291-1) contains supplementary material, which is available to authorized users.