Cargando…

Criteria for identifying the molecular basis of the engram (CaMKII, PKMzeta)

The engram refers to the molecular changes by which a memory is stored in the brain. Substantial evidence suggests that memory involves learning-dependent changes at synapses, a process termed long-term potentiation (LTP). Thus, understanding the storages process that underlies LTP may provide insig...

Descripción completa

Detalles Bibliográficos
Autor principal: Lisman, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707903/
https://www.ncbi.nlm.nih.gov/pubmed/29187215
http://dx.doi.org/10.1186/s13041-017-0337-4
Descripción
Sumario:The engram refers to the molecular changes by which a memory is stored in the brain. Substantial evidence suggests that memory involves learning-dependent changes at synapses, a process termed long-term potentiation (LTP). Thus, understanding the storages process that underlies LTP may provide insight into how the engram is stored. LTP involves induction, maintenance (storage), and expression sub-processes; special tests are required to specifically reveal properties of the storage process. The strongest of these is the Erasure test in which a transiently applied agent that attacks a putative storage molecule may lead to persistent erasure of previously induced LTP/memory. Two major hypotheses have been proposed for LTP/memory storage: the CaMKII and PKM-zeta hypotheses. After discussing the tests that can be used to identify the engram (Necessity test, Saturation/Occlusion test, Erasure test), the status of these hypotheses is evaluated, based on the literature on LTP and memory-guided behavior. Review of the literature indicates that all three tests noted above support the CaMKII hypothesis when done at both the LTP level and at the behavioral level. Taken together, the results strongly suggest that the engram is stored by an LTP process in which CaMKII is a critical memory storage molecule.