Cargando…
Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of Histone Deacetylases (HDAC)
Recent studies from our group and many others have shown the ability of histone deacetylase (HDAC) inhibitors for retarding the growth of carcinomas of cervix, colon and rectum in vitro. A search for naturally occurring HDAC inhibitors continues due to the adverse effects associated with known HDAC...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5708809/ https://www.ncbi.nlm.nih.gov/pubmed/29190639 http://dx.doi.org/10.1371/journal.pone.0186208 |
_version_ | 1783282689212678144 |
---|---|
author | Anantharaju, Preethi G. Reddy, Deepa B. Padukudru, Mahesh A. Chitturi, CH. M. Kumari Vimalambike, Manjunath G. Madhunapantula, SubbaRao V. |
author_facet | Anantharaju, Preethi G. Reddy, Deepa B. Padukudru, Mahesh A. Chitturi, CH. M. Kumari Vimalambike, Manjunath G. Madhunapantula, SubbaRao V. |
author_sort | Anantharaju, Preethi G. |
collection | PubMed |
description | Recent studies from our group and many others have shown the ability of histone deacetylase (HDAC) inhibitors for retarding the growth of carcinomas of cervix, colon and rectum in vitro. A search for naturally occurring HDAC inhibitors continues due to the adverse effects associated with known HDAC inhibitors like SAHA and TSA. Therefore in the current study, naturally occurring cinnamic acids derivatives were screened for HDAC inhibitory effect using in silico docking method which identified cinnamic acids as potential candidates. Cinnamic acids (CA) are naturally occurring phenolic compounds known to exhibit anticancer properties. However, it is not clearly known whether the anticancer properties of CA derivatives are due to the inhibition of oncogenic HDACs, if so how the efficacy varies among various CA derivatives. Hence, the HDAC inhibitory potential of CA derivatives containing increasing number of hydroxylic groups or methoxy moieties was determined using Discovery Studio software and the most potent CA derivatives tested ex vivo (biochemical assay) as well as in vitro (using cell based assay). Among CA derivatives tested, dihydroxy cinnamic acid (DHCA, commonly known as caffeic acid) exhibited better interactions with HDAC2 (compared to other isoforms) in silico and inhibited its activity ex vivo as well as in vitro. Targeted reduction of HDAC activity using DHCA induced death of cancer cells by (a) generating reactive oxygen species, (b) arresting cells in S and G2/M phases; and (c) induction of caspase-3 mediated apoptosis. In conclusion, we demonstrated that DHCA inhibited cancer cell growth by binding to HDAC followed by the induction of apoptosis. |
format | Online Article Text |
id | pubmed-5708809 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-57088092017-12-15 Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of Histone Deacetylases (HDAC) Anantharaju, Preethi G. Reddy, Deepa B. Padukudru, Mahesh A. Chitturi, CH. M. Kumari Vimalambike, Manjunath G. Madhunapantula, SubbaRao V. PLoS One Research Article Recent studies from our group and many others have shown the ability of histone deacetylase (HDAC) inhibitors for retarding the growth of carcinomas of cervix, colon and rectum in vitro. A search for naturally occurring HDAC inhibitors continues due to the adverse effects associated with known HDAC inhibitors like SAHA and TSA. Therefore in the current study, naturally occurring cinnamic acids derivatives were screened for HDAC inhibitory effect using in silico docking method which identified cinnamic acids as potential candidates. Cinnamic acids (CA) are naturally occurring phenolic compounds known to exhibit anticancer properties. However, it is not clearly known whether the anticancer properties of CA derivatives are due to the inhibition of oncogenic HDACs, if so how the efficacy varies among various CA derivatives. Hence, the HDAC inhibitory potential of CA derivatives containing increasing number of hydroxylic groups or methoxy moieties was determined using Discovery Studio software and the most potent CA derivatives tested ex vivo (biochemical assay) as well as in vitro (using cell based assay). Among CA derivatives tested, dihydroxy cinnamic acid (DHCA, commonly known as caffeic acid) exhibited better interactions with HDAC2 (compared to other isoforms) in silico and inhibited its activity ex vivo as well as in vitro. Targeted reduction of HDAC activity using DHCA induced death of cancer cells by (a) generating reactive oxygen species, (b) arresting cells in S and G2/M phases; and (c) induction of caspase-3 mediated apoptosis. In conclusion, we demonstrated that DHCA inhibited cancer cell growth by binding to HDAC followed by the induction of apoptosis. Public Library of Science 2017-11-30 /pmc/articles/PMC5708809/ /pubmed/29190639 http://dx.doi.org/10.1371/journal.pone.0186208 Text en © 2017 Anantharaju et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Anantharaju, Preethi G. Reddy, Deepa B. Padukudru, Mahesh A. Chitturi, CH. M. Kumari Vimalambike, Manjunath G. Madhunapantula, SubbaRao V. Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of Histone Deacetylases (HDAC) |
title | Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of Histone Deacetylases (HDAC) |
title_full | Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of Histone Deacetylases (HDAC) |
title_fullStr | Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of Histone Deacetylases (HDAC) |
title_full_unstemmed | Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of Histone Deacetylases (HDAC) |
title_short | Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of Histone Deacetylases (HDAC) |
title_sort | induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of histone deacetylases (hdac) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5708809/ https://www.ncbi.nlm.nih.gov/pubmed/29190639 http://dx.doi.org/10.1371/journal.pone.0186208 |
work_keys_str_mv | AT anantharajupreethig inductionofcolonandcervicalcancercelldeathbycinnamicacidderivativesismediatedthroughtheinhibitionofhistonedeacetylaseshdac AT reddydeepab inductionofcolonandcervicalcancercelldeathbycinnamicacidderivativesismediatedthroughtheinhibitionofhistonedeacetylaseshdac AT padukudrumahesha inductionofcolonandcervicalcancercelldeathbycinnamicacidderivativesismediatedthroughtheinhibitionofhistonedeacetylaseshdac AT chitturichmkumari inductionofcolonandcervicalcancercelldeathbycinnamicacidderivativesismediatedthroughtheinhibitionofhistonedeacetylaseshdac AT vimalambikemanjunathg inductionofcolonandcervicalcancercelldeathbycinnamicacidderivativesismediatedthroughtheinhibitionofhistonedeacetylaseshdac AT madhunapantulasubbaraov inductionofcolonandcervicalcancercelldeathbycinnamicacidderivativesismediatedthroughtheinhibitionofhistonedeacetylaseshdac |