Cargando…
Anexelekto/MER tyrosine kinase inhibitor ONO-7475 arrests growth and kills FMS-like tyrosine kinase 3-internal tandem duplication mutant acute myeloid leukemia cells by diverse mechanisms
Nearly one-third of patients with acute myeloid leukemia have FMS-like tyrosine kinase 3 mutations and thus have poor survival prospects. Receptor tyrosine kinase anexelekto is critical for FMS-like tyrosine kinase 3 signaling and participates in FMS-like tyrosine kinase 3 inhibitor resistance mecha...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ferrata Storti Foundation
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5709104/ https://www.ncbi.nlm.nih.gov/pubmed/28912176 http://dx.doi.org/10.3324/haematol.2017.168856 |
Sumario: | Nearly one-third of patients with acute myeloid leukemia have FMS-like tyrosine kinase 3 mutations and thus have poor survival prospects. Receptor tyrosine kinase anexelekto is critical for FMS-like tyrosine kinase 3 signaling and participates in FMS-like tyrosine kinase 3 inhibitor resistance mechanisms. Thus, strategies targeting anexelekto could prove useful for acute myeloid leukemia therapy. ONO-7475 is an inhibitor with high specificity for anexelekto and MER tyrosine kinase. Herein, we report that ONO-7475 potently arrested growth and induced apoptosis in acute myeloid leukemia with internal tandem duplication mutation of FMS-like tyrosine kinase 3. MER tyrosine kinase-lacking MOLM13 cells were sensitive to ONO-7475, while MER tyrosine kinase expressing OCI-AML3 cells were resistant, suggesting that the drug acts via anexelekto in acute myeloid leukemia cells. Reverse phase protein analysis of ONO-7475 treated cells revealed that cell cycle regulators like cyclin dependent kinase 1, cyclin B1, polo-like kinase 1, and retinoblastoma were suppressed. ONO-7475 suppressed cyclin dependent kinase 1, cyclin B1, polo-like kinase 1 gene expression suggesting that anexelekto may regulate the cell cycle, at least in part, via transcriptional mechanisms. Importantly, ONO-7475 was effective in a human FMS-like tyrosine kinase 3 with internal tandem duplication mutant murine xenograft model. Mice fed a diet containing ONO-7475 exhibited significantly longer survival and, interestingly, blocked leukemia cell infiltration in the liver. In summary, ONO-7475 effectively kills acute myeloid leukemia cells in vitro and in vivo by mechanisms that involve disruption of diverse survival and proliferation pathways. |
---|