Cargando…

The effect of anger expression style on cardiovascular responses to lateralized cognitive stressors

To determine the effects of self-reported anger expression style on cerebrally lateralized physiological responses to neuropsychological stressors, changes in systolic blood pressure and heart rate were examined in response to a verbal fluency task and a figural fluency task among individuals report...

Descripción completa

Detalles Bibliográficos
Autores principales: Cox, David E., DeVore, Benjamin B., Harrison, Patti Kelly, Harrison, David W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5709280/
https://www.ncbi.nlm.nih.gov/pubmed/28508303
http://dx.doi.org/10.1007/s40708-017-0068-4
Descripción
Sumario:To determine the effects of self-reported anger expression style on cerebrally lateralized physiological responses to neuropsychological stressors, changes in systolic blood pressure and heart rate were examined in response to a verbal fluency task and a figural fluency task among individuals reporting either “anger in” or “anger out” expression styles. Significant group by trial interaction effects was found for systolic blood pressure following administration of verbal fluency [F(1,54) = 5.86, p < 0.05] and nonverbal fluency stressors [F(1,54) = 13.68, p < .001]. Similar interactions were seen for systolic heart rate following administration of verbal fluency [F(1,54) = 5.86, p < .005] and nonverbal fluency stressors [F(1,54) = 13.68, p < .001]. The corresponding results are discussed in terms of functional cerebral systems and potential implications for physiological models of anger. Given the association between anger and negative physical health outcomes, there is a clear need to better understand the physiological components of anger. The results of this experiment indicate that a repressive “anger in” expression style is associated with deregulation of the right frontal region. This same region has been shown to be intimately involved in cardiovascular recovery, glucose metabolism, and blood pressure regulation.