Cargando…
Emotion recognition based on EEG features in movie clips with channel selection
Emotion plays an important role in human interaction. People can explain their emotions in terms of word, voice intonation, facial expression, and body language. However, brain–computer interface (BCI) systems have not reached the desired level to interpret emotions. Automatic emotion recognition ba...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5709281/ https://www.ncbi.nlm.nih.gov/pubmed/28711988 http://dx.doi.org/10.1007/s40708-017-0069-3 |
_version_ | 1783282744380358656 |
---|---|
author | Özerdem, Mehmet Siraç Polat, Hasan |
author_facet | Özerdem, Mehmet Siraç Polat, Hasan |
author_sort | Özerdem, Mehmet Siraç |
collection | PubMed |
description | Emotion plays an important role in human interaction. People can explain their emotions in terms of word, voice intonation, facial expression, and body language. However, brain–computer interface (BCI) systems have not reached the desired level to interpret emotions. Automatic emotion recognition based on BCI systems has been a topic of great research in the last few decades. Electroencephalogram (EEG) signals are one of the most crucial resources for these systems. The main advantage of using EEG signals is that it reflects real emotion and can easily be processed by computer systems. In this study, EEG signals related to positive and negative emotions have been classified with preprocessing of channel selection. Self-Assessment Manikins was used to determine emotional states. We have employed discrete wavelet transform and machine learning techniques such as multilayer perceptron neural network (MLPNN) and k-nearest neighborhood (kNN) algorithm to classify EEG signals. The classifier algorithms were initially used for channel selection. EEG channels for each participant were evaluated separately, and five EEG channels that offered the best classification performance were determined. Thus, final feature vectors were obtained by combining the features of EEG segments belonging to these channels. The final feature vectors with related positive and negative emotions were classified separately using MLPNN and kNN algorithms. The classification performance obtained with both the algorithms are computed and compared. The average overall accuracies were obtained as 77.14 and 72.92% by using MLPNN and kNN, respectively. |
format | Online Article Text |
id | pubmed-5709281 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-57092812017-12-07 Emotion recognition based on EEG features in movie clips with channel selection Özerdem, Mehmet Siraç Polat, Hasan Brain Inform Article Emotion plays an important role in human interaction. People can explain their emotions in terms of word, voice intonation, facial expression, and body language. However, brain–computer interface (BCI) systems have not reached the desired level to interpret emotions. Automatic emotion recognition based on BCI systems has been a topic of great research in the last few decades. Electroencephalogram (EEG) signals are one of the most crucial resources for these systems. The main advantage of using EEG signals is that it reflects real emotion and can easily be processed by computer systems. In this study, EEG signals related to positive and negative emotions have been classified with preprocessing of channel selection. Self-Assessment Manikins was used to determine emotional states. We have employed discrete wavelet transform and machine learning techniques such as multilayer perceptron neural network (MLPNN) and k-nearest neighborhood (kNN) algorithm to classify EEG signals. The classifier algorithms were initially used for channel selection. EEG channels for each participant were evaluated separately, and five EEG channels that offered the best classification performance were determined. Thus, final feature vectors were obtained by combining the features of EEG segments belonging to these channels. The final feature vectors with related positive and negative emotions were classified separately using MLPNN and kNN algorithms. The classification performance obtained with both the algorithms are computed and compared. The average overall accuracies were obtained as 77.14 and 72.92% by using MLPNN and kNN, respectively. Springer Berlin Heidelberg 2017-07-15 /pmc/articles/PMC5709281/ /pubmed/28711988 http://dx.doi.org/10.1007/s40708-017-0069-3 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Article Özerdem, Mehmet Siraç Polat, Hasan Emotion recognition based on EEG features in movie clips with channel selection |
title | Emotion recognition based on EEG features in movie clips with channel selection |
title_full | Emotion recognition based on EEG features in movie clips with channel selection |
title_fullStr | Emotion recognition based on EEG features in movie clips with channel selection |
title_full_unstemmed | Emotion recognition based on EEG features in movie clips with channel selection |
title_short | Emotion recognition based on EEG features in movie clips with channel selection |
title_sort | emotion recognition based on eeg features in movie clips with channel selection |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5709281/ https://www.ncbi.nlm.nih.gov/pubmed/28711988 http://dx.doi.org/10.1007/s40708-017-0069-3 |
work_keys_str_mv | AT ozerdemmehmetsirac emotionrecognitionbasedoneegfeaturesinmovieclipswithchannelselection AT polathasan emotionrecognitionbasedoneegfeaturesinmovieclipswithchannelselection |