Cargando…

The oral commensal Streptococcus mitis activates the aryl hydrocarbon receptor in human oral epithelial cells

Streptococcus mitis (S. mitis) is a pioneer commensal bacterial species colonizing many of the surfaces of the oral cavity in healthy individuals. Yet, not much information is available regarding its interaction with the host. We used examination of its transcriptional regulation in oral keratinocyt...

Descripción completa

Detalles Bibliográficos
Autores principales: Engen, Stian A, Rørvik, Gro H, Schreurs, Olav, Blix, Inger JS, Schenck, Karl
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5709542/
https://www.ncbi.nlm.nih.gov/pubmed/28621325
http://dx.doi.org/10.1038/ijos.2017.17
Descripción
Sumario:Streptococcus mitis (S. mitis) is a pioneer commensal bacterial species colonizing many of the surfaces of the oral cavity in healthy individuals. Yet, not much information is available regarding its interaction with the host. We used examination of its transcriptional regulation in oral keratinocytes to elucidate some of its potential roles in the oral cavity. Transcription factor analysis of oral keratinocytes predicted S. mitis-mediated activation of aryl hydrocarbon receptor (AhR). Activation and functionality of AhR was confirmed through nuclear translocation determined by immunofluorescence microscopy and real-time polymerase chain reaction with reverse transcription analysis of CYP1A1, the hallmark gene for AhR activation. Addition of Streptococcus mutans or Streptococcus gordonii did not induce CYP1A1 transcription in the keratinocyte cultures. Introduction of an AhR-specific inhibitor revealed that S. mitis-mediated transcription of CXCL2 and CXCL8 was regulated by AhR. Elevated levels of prostaglandin E2 (enzyme-linked immunosorbent assay) in supernatants from S. mitis-treated oral epithelial cells were also attenuated by inhibition of AhR activity. The observed AhR-regulated activities point to a contribution of S. mitis in the regulation of inflammatory responses and thereby to wound healing in the oral cavity. The concept that the oral commensal microbiota can induce AhR activation is important, also in view of the role that AhR has in modulation of T-cell differentiation and as an anti-inflammatory factor in macrophages.