Cargando…
Adaptive threshold segmentation of pituitary adenomas from FDG PET images for radiosurgery
In this study we have attempted to optimize a PET based adaptive threshold segmentation method for delineating small tumors, particularly in a background of high tracer activity. The metabolic nature of pituitary adenomas and the constraints of MRI imaging in the postoperative setting to delineate t...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5711116/ https://www.ncbi.nlm.nih.gov/pubmed/25493519 http://dx.doi.org/10.1120/jacmp.v15i6.4952 |
_version_ | 1783283011940253696 |
---|---|
author | Thomas T, Hannah M. Devadhas, Devakumar Heck, Danie K. Chacko, Ari G. Rebekah, Grace Oommen, Regi Samuel, E. James J. |
author_facet | Thomas T, Hannah M. Devadhas, Devakumar Heck, Danie K. Chacko, Ari G. Rebekah, Grace Oommen, Regi Samuel, E. James J. |
author_sort | Thomas T, Hannah M. |
collection | PubMed |
description | In this study we have attempted to optimize a PET based adaptive threshold segmentation method for delineating small tumors, particularly in a background of high tracer activity. The metabolic nature of pituitary adenomas and the constraints of MRI imaging in the postoperative setting to delineate these tumors during radiosurgical procedures motivated us to develop this method. Phantom experiments were done to establish a relationship between the threshold required for segmenting the PET images and the target size and the activity concentration within the target in relation to its background. The threshold was developed from multiple linear regression of the experimental data optimized for tumor sizes less than 4 cm(3). We validated our method against the phantom target volumes with measured target to background ratios ranging from 1.6 to 14.58. The method was tested on ten retrospective patients with residual growth hormone‐secreting pituitary adenomas that underwent radiosurgery and compared against the volumes delineated by manual method. The predicted volumes against the true volume of the phantom inserts gave a correlation coefficient of 99% [Formula: see text]. In the ten retrospective patients, the automatically segmented tumor volumes against volumes manually delineated by the clinicians had a correlation of 94% [Formula: see text]. This adaptive threshold segmentation showed promising results in delineating tumor volumes in pituitary adenomas planned for stereotactic radiosurgery, particularly in the postoperative setting where MR and CT images may be associated with artifacts, provided optimization experiment is carried out. PACS number: 87.57.nm, 87.57.uk |
format | Online Article Text |
id | pubmed-5711116 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-57111162018-04-02 Adaptive threshold segmentation of pituitary adenomas from FDG PET images for radiosurgery Thomas T, Hannah M. Devadhas, Devakumar Heck, Danie K. Chacko, Ari G. Rebekah, Grace Oommen, Regi Samuel, E. James J. J Appl Clin Med Phys Medical Imaging In this study we have attempted to optimize a PET based adaptive threshold segmentation method for delineating small tumors, particularly in a background of high tracer activity. The metabolic nature of pituitary adenomas and the constraints of MRI imaging in the postoperative setting to delineate these tumors during radiosurgical procedures motivated us to develop this method. Phantom experiments were done to establish a relationship between the threshold required for segmenting the PET images and the target size and the activity concentration within the target in relation to its background. The threshold was developed from multiple linear regression of the experimental data optimized for tumor sizes less than 4 cm(3). We validated our method against the phantom target volumes with measured target to background ratios ranging from 1.6 to 14.58. The method was tested on ten retrospective patients with residual growth hormone‐secreting pituitary adenomas that underwent radiosurgery and compared against the volumes delineated by manual method. The predicted volumes against the true volume of the phantom inserts gave a correlation coefficient of 99% [Formula: see text]. In the ten retrospective patients, the automatically segmented tumor volumes against volumes manually delineated by the clinicians had a correlation of 94% [Formula: see text]. This adaptive threshold segmentation showed promising results in delineating tumor volumes in pituitary adenomas planned for stereotactic radiosurgery, particularly in the postoperative setting where MR and CT images may be associated with artifacts, provided optimization experiment is carried out. PACS number: 87.57.nm, 87.57.uk John Wiley and Sons Inc. 2014-11-08 /pmc/articles/PMC5711116/ /pubmed/25493519 http://dx.doi.org/10.1120/jacmp.v15i6.4952 Text en © 2014 The Authors. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/3.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Medical Imaging Thomas T, Hannah M. Devadhas, Devakumar Heck, Danie K. Chacko, Ari G. Rebekah, Grace Oommen, Regi Samuel, E. James J. Adaptive threshold segmentation of pituitary adenomas from FDG PET images for radiosurgery |
title | Adaptive threshold segmentation of pituitary adenomas from FDG PET images for radiosurgery |
title_full | Adaptive threshold segmentation of pituitary adenomas from FDG PET images for radiosurgery |
title_fullStr | Adaptive threshold segmentation of pituitary adenomas from FDG PET images for radiosurgery |
title_full_unstemmed | Adaptive threshold segmentation of pituitary adenomas from FDG PET images for radiosurgery |
title_short | Adaptive threshold segmentation of pituitary adenomas from FDG PET images for radiosurgery |
title_sort | adaptive threshold segmentation of pituitary adenomas from fdg pet images for radiosurgery |
topic | Medical Imaging |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5711116/ https://www.ncbi.nlm.nih.gov/pubmed/25493519 http://dx.doi.org/10.1120/jacmp.v15i6.4952 |
work_keys_str_mv | AT thomasthannahm adaptivethresholdsegmentationofpituitaryadenomasfromfdgpetimagesforradiosurgery AT devadhasdevakumar adaptivethresholdsegmentationofpituitaryadenomasfromfdgpetimagesforradiosurgery AT heckdaniek adaptivethresholdsegmentationofpituitaryadenomasfromfdgpetimagesforradiosurgery AT chackoarig adaptivethresholdsegmentationofpituitaryadenomasfromfdgpetimagesforradiosurgery AT rebekahgrace adaptivethresholdsegmentationofpituitaryadenomasfromfdgpetimagesforradiosurgery AT oommenregi adaptivethresholdsegmentationofpituitaryadenomasfromfdgpetimagesforradiosurgery AT samuelejamesj adaptivethresholdsegmentationofpituitaryadenomasfromfdgpetimagesforradiosurgery |