Cargando…
Spatiotemporal modeling and prediction of soil heavy metals based on spatiotemporal cokriging
Soil heavy metals exhibit significant spatiotemporal variability and are strongly correlated with other soil heavy metals. Thus, other heavy metals can be used to improve the accuracy of predictions when performing spatiotemporal predictions of soil heavy metals within a given area. In this study, w...
Autores principales: | Zhang, Bei, Yang, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5711875/ https://www.ncbi.nlm.nih.gov/pubmed/29196730 http://dx.doi.org/10.1038/s41598-017-17018-5 |
Ejemplares similares
-
Selection of Optimal Auxiliary Soil Nutrient Variables for Cokriging Interpolation
por: Song, Genxin, et al.
Publicado: (2014) -
Spatiotemporal Trends in Oral Cancer Mortality and Potential Risks Associated with Heavy Metal Content in Taiwan Soil
por: Chiang, Chi-Ting, et al.
Publicado: (2010) -
Spatiotemporal Characteristics and Health Risk Assessment of Heavy Metals in PM(2.5) in Zhejiang Province
por: Wang, Xiaofeng, et al.
Publicado: (2018) -
Spatial variability in the amount of forest litter at the local scale in northeastern China: Kriging and cokriging approaches to interpolation
por: Qin, Qianqian, et al.
Publicado: (2019) -
Spatiotemporal Trends, Sources and Ecological Risks of Heavy Metals in the Surface Sediments of Weitou Bay, China
por: Chen, Qiuming, et al.
Publicado: (2021)