Cargando…
Classification of Large-Scale Remote Sensing Images for Automatic Identification of Health Hazards: Smoke Detection Using an Autologistic Regression Classifier
Remote sensing images from Earth-orbiting satellites are a potentially rich data source for monitoring and cataloguing atmospheric health hazards that cover large geographic regions. A method is proposed for classifying such images into hazard and nonhazard regions using the autologistic regression...
Autores principales: | Wolters, Mark A., Dean, C. B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5711969/ https://www.ncbi.nlm.nih.gov/pubmed/29225715 http://dx.doi.org/10.1007/s12561-016-9185-5 |
Ejemplares similares
-
Using an autologistic regression model to identify spatial risk factors and spatial risk patterns of hand, foot and mouth disease (HFMD) in Mainland China
por: Bo, Yan-Chen, et al.
Publicado: (2014) -
Multiple Classifier System for Remote Sensing Image Classification: A Review
por: Du, Peijun, et al.
Publicado: (2012) -
RSI-CB: A Large-Scale Remote Sensing Image Classification Benchmark Using Crowdsourced Data
por: Li, Haifeng, et al.
Publicado: (2020) -
Defining Natural Hazards – Large Scale Hazards
por: Agrawal, Nirupama
Publicado: (2018) -
Quantifying large‐scale ecosystem stability with remote sensing data
por: White, Hannah J., et al.
Publicado: (2020)