Cargando…
Structural and quantitative evidence of α2–6-sialylated N-glycans as markers of the differentiation potential of human mesenchymal stem cells
Human somatic stem cells such as mesenchymal stem cells (hMSCs) have the capacity to differentiate into mesenchymal tissue lineages and to alter immune regulatory functions. As such, they hold promise for use in stem cell-based therapies. However, no method is currently available to evaluate the act...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5711977/ https://www.ncbi.nlm.nih.gov/pubmed/27314244 http://dx.doi.org/10.1007/s10719-016-9699-6 |
_version_ | 1783283132817997824 |
---|---|
author | Hasehira, Kayo Hirabayashi, Jun Tateno, Hiroaki |
author_facet | Hasehira, Kayo Hirabayashi, Jun Tateno, Hiroaki |
author_sort | Hasehira, Kayo |
collection | PubMed |
description | Human somatic stem cells such as mesenchymal stem cells (hMSCs) have the capacity to differentiate into mesenchymal tissue lineages and to alter immune regulatory functions. As such, they hold promise for use in stem cell-based therapies. However, no method is currently available to evaluate the actual differentiation capacity of hMSCs prior to cell transplantation. Previously, we performed a comprehensive glycan profiling of adipose-derived hMSCs using high-density lectin microarray and demonstrated that α2–6-sialylation is a marker of the differentiation potential of these cells. Nevertheless, no information was available about the structural details of these of α2–6-sialylated glycans. Here we used high performance liquid chromatography (HPLC) analysis combined with mass spectrometry (MS) to perform a structural and quantitative glycome analysis targeting both N- and O-glycans derived from early (with differentiation ability) and late (without differentiation ability) passages of adipose tissue-derived hMSCs. Findings in these cells were compared with those from human induced pluripotent stem cells (hiPSCs), human dermal fibroblasts (hFibs) and cartilage tissue-derived chondrocytes. A higher percentage of α2–6-sialylated N-glycans was detected in early passage cells (24–28 % of sialylated N-glycans) compared with late passage cells (13–15 %). A major α2–6-sialylated N-glycan structure detected in adipose-derived hMSCs was that of mono-sialylated biantennary N-glycan. Similar results were obtained for the cartilage tissue-derived chondrocytes, Yub621c (28 % for passage 7 and 5 % for passage 28). In contrast, no significant differences were observed between early and late passage hMSCs with respect to α2–6-sialylated O-glycan percentages. These results demonstrate that levels of α2–6-sialylated N-glycans, but not O-glycans, could be used as markers of the differential potential of hMSCs. |
format | Online Article Text |
id | pubmed-5711977 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-57119772017-12-07 Structural and quantitative evidence of α2–6-sialylated N-glycans as markers of the differentiation potential of human mesenchymal stem cells Hasehira, Kayo Hirabayashi, Jun Tateno, Hiroaki Glycoconj J Original Article Human somatic stem cells such as mesenchymal stem cells (hMSCs) have the capacity to differentiate into mesenchymal tissue lineages and to alter immune regulatory functions. As such, they hold promise for use in stem cell-based therapies. However, no method is currently available to evaluate the actual differentiation capacity of hMSCs prior to cell transplantation. Previously, we performed a comprehensive glycan profiling of adipose-derived hMSCs using high-density lectin microarray and demonstrated that α2–6-sialylation is a marker of the differentiation potential of these cells. Nevertheless, no information was available about the structural details of these of α2–6-sialylated glycans. Here we used high performance liquid chromatography (HPLC) analysis combined with mass spectrometry (MS) to perform a structural and quantitative glycome analysis targeting both N- and O-glycans derived from early (with differentiation ability) and late (without differentiation ability) passages of adipose tissue-derived hMSCs. Findings in these cells were compared with those from human induced pluripotent stem cells (hiPSCs), human dermal fibroblasts (hFibs) and cartilage tissue-derived chondrocytes. A higher percentage of α2–6-sialylated N-glycans was detected in early passage cells (24–28 % of sialylated N-glycans) compared with late passage cells (13–15 %). A major α2–6-sialylated N-glycan structure detected in adipose-derived hMSCs was that of mono-sialylated biantennary N-glycan. Similar results were obtained for the cartilage tissue-derived chondrocytes, Yub621c (28 % for passage 7 and 5 % for passage 28). In contrast, no significant differences were observed between early and late passage hMSCs with respect to α2–6-sialylated O-glycan percentages. These results demonstrate that levels of α2–6-sialylated N-glycans, but not O-glycans, could be used as markers of the differential potential of hMSCs. Springer US 2016-06-17 2017 /pmc/articles/PMC5711977/ /pubmed/27314244 http://dx.doi.org/10.1007/s10719-016-9699-6 Text en © The Author(s) 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Article Hasehira, Kayo Hirabayashi, Jun Tateno, Hiroaki Structural and quantitative evidence of α2–6-sialylated N-glycans as markers of the differentiation potential of human mesenchymal stem cells |
title | Structural and quantitative evidence of α2–6-sialylated N-glycans as markers of the differentiation potential of human mesenchymal stem cells |
title_full | Structural and quantitative evidence of α2–6-sialylated N-glycans as markers of the differentiation potential of human mesenchymal stem cells |
title_fullStr | Structural and quantitative evidence of α2–6-sialylated N-glycans as markers of the differentiation potential of human mesenchymal stem cells |
title_full_unstemmed | Structural and quantitative evidence of α2–6-sialylated N-glycans as markers of the differentiation potential of human mesenchymal stem cells |
title_short | Structural and quantitative evidence of α2–6-sialylated N-glycans as markers of the differentiation potential of human mesenchymal stem cells |
title_sort | structural and quantitative evidence of α2–6-sialylated n-glycans as markers of the differentiation potential of human mesenchymal stem cells |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5711977/ https://www.ncbi.nlm.nih.gov/pubmed/27314244 http://dx.doi.org/10.1007/s10719-016-9699-6 |
work_keys_str_mv | AT hasehirakayo structuralandquantitativeevidenceofa26sialylatednglycansasmarkersofthedifferentiationpotentialofhumanmesenchymalstemcells AT hirabayashijun structuralandquantitativeevidenceofa26sialylatednglycansasmarkersofthedifferentiationpotentialofhumanmesenchymalstemcells AT tatenohiroaki structuralandquantitativeevidenceofa26sialylatednglycansasmarkersofthedifferentiationpotentialofhumanmesenchymalstemcells |