Cargando…

A multiplexed magnetic tweezer with precision particle tracking and bi-directional force control

BACKGROUND: In the past two decades, methods have been developed to measure the mechanical properties of single biomolecules. One of these methods, Magnetic tweezers, is amenable to aquisition of data on many single molecules simultaneously, but to take full advantage of this "multiplexing"...

Descripción completa

Detalles Bibliográficos
Autores principales: Johnson, Keith C., Clemmens, Emilie, Mahmoud, Hani, Kirkpatrick, Robin, Vizcarra, Juan C., Thomas, Wendy E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5712100/
https://www.ncbi.nlm.nih.gov/pubmed/29213305
http://dx.doi.org/10.1186/s13036-017-0091-2
Descripción
Sumario:BACKGROUND: In the past two decades, methods have been developed to measure the mechanical properties of single biomolecules. One of these methods, Magnetic tweezers, is amenable to aquisition of data on many single molecules simultaneously, but to take full advantage of this "multiplexing" ability, it is necessary to simultaneously incorprorate many capabilities that ahve been only demonstrated separately. METHODS: Our custom built magnetic tweezer combines high multiplexing, precision bead tracking, and bi-directional force control into a flexible and stable platform for examining single molecule behavior. This was accomplished using electromagnets, which provide high temporal control of force while achieving force levels similar to permanent magnets via large paramagnetic beads. RESULTS: Here we describe the instrument and its ability to apply 2–260 pN of force on up to 120 beads simultaneously, with a maximum spatial precision of 12 nm using a variety of bead sizes and experimental techniques. We also demonstrate a novel method for increasing the precision of force estimations on heterogeneous paramagnetic beads using a combination of density separation and bi-directional force correlation which reduces the coefficient of variation of force from 27% to 6%. We then use the instrument to examine the force dependence of uncoiling and recoiling velocity of type 1 fimbriae from Eschericia coli (E. coli) bacteria, and see similar results to previous studies. CONCLUSION: This platform provides a simple, effective, and flexible method for efficiently gathering single molecule force spectroscopy measurements.