Cargando…
Application of the Stockwell Transform to Electroencephalographic Signal Analysis during Gait Cycle
The analysis of electroencephalographic signals in frequency is usually not performed by transforms that can extract the instantaneous characteristics of the signal. However, the non-steady state nature of these low voltage electrical signals makes them suitable for this kind of analysis. In this pa...
Autores principales: | Ortiz, Mario, Rodríguez-Ugarte, Marisol, Iáñez, Eduardo, Azorín, José M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5712375/ https://www.ncbi.nlm.nih.gov/pubmed/29234269 http://dx.doi.org/10.3389/fnins.2017.00660 |
Ejemplares similares
-
Improving Real-Time Lower Limb Motor Imagery Detection Using tDCS and an Exoskeleton
por: Rodríguez-Ugarte, Marisol, et al.
Publicado: (2018) -
Personalized Offline and Pseudo-Online BCI Models to Detect Pedaling Intent
por: Rodríguez-Ugarte, Marisol, et al.
Publicado: (2017) -
Low Intensity Focused tDCS Over the Motor Cortex Shows Inefficacy to Improve Motor Imagery Performance
por: Angulo-Sherman, Irma N., et al.
Publicado: (2017) -
Analysis of the EEG Rhythms Based on the Empirical Mode Decomposition During Motor Imagery When Using a Lower-Limb Exoskeleton. A Case Study
por: Ortiz, Mario, et al.
Publicado: (2020) -
Stockwell transform and semi-supervised feature selection from deep features for classification of BCI signals
por: Salimpour, Sahar, et al.
Publicado: (2022)