Cargando…

Random access quantum information processors using multimode circuit quantum electrodynamics

Qubit connectivity is an important property of a quantum processor, with an ideal processor having random access—the ability of arbitrary qubit pairs to interact directly. This a challenge with superconducting circuits, as state-of-the-art architectures rely on only nearest-neighbor coupling. Here,...

Descripción completa

Detalles Bibliográficos
Autores principales: Naik, R. K., Leung, N., Chakram, S., Groszkowski, Peter, Lu, Y., Earnest, N., McKay, D. C., Koch, Jens, Schuster, D. I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5712528/
https://www.ncbi.nlm.nih.gov/pubmed/29199271
http://dx.doi.org/10.1038/s41467-017-02046-6
_version_ 1783283235993681920
author Naik, R. K.
Leung, N.
Chakram, S.
Groszkowski, Peter
Lu, Y.
Earnest, N.
McKay, D. C.
Koch, Jens
Schuster, D. I.
author_facet Naik, R. K.
Leung, N.
Chakram, S.
Groszkowski, Peter
Lu, Y.
Earnest, N.
McKay, D. C.
Koch, Jens
Schuster, D. I.
author_sort Naik, R. K.
collection PubMed
description Qubit connectivity is an important property of a quantum processor, with an ideal processor having random access—the ability of arbitrary qubit pairs to interact directly. This a challenge with superconducting circuits, as state-of-the-art architectures rely on only nearest-neighbor coupling. Here, we implement a random access superconducting quantum information processor, demonstrating universal operations on a nine-qubit memory, with a Josephson junction transmon circuit serving as the central processor. The quantum memory uses the eigenmodes of a linear array of coupled superconducting resonators. We selectively stimulate vacuum Rabi oscillations between the transmon and individual eigenmodes through parametric flux modulation of the transmon frequency. Utilizing these oscillations, we perform a universal set of quantum gates on 38 arbitrary pairs of modes and prepare multimode entangled states, all using only two control lines. We thus achieve hardware-efficient random access multi-qubit control in an architecture compatible with long-lived microwave cavity-based quantum memories.
format Online
Article
Text
id pubmed-5712528
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-57125282017-12-05 Random access quantum information processors using multimode circuit quantum electrodynamics Naik, R. K. Leung, N. Chakram, S. Groszkowski, Peter Lu, Y. Earnest, N. McKay, D. C. Koch, Jens Schuster, D. I. Nat Commun Article Qubit connectivity is an important property of a quantum processor, with an ideal processor having random access—the ability of arbitrary qubit pairs to interact directly. This a challenge with superconducting circuits, as state-of-the-art architectures rely on only nearest-neighbor coupling. Here, we implement a random access superconducting quantum information processor, demonstrating universal operations on a nine-qubit memory, with a Josephson junction transmon circuit serving as the central processor. The quantum memory uses the eigenmodes of a linear array of coupled superconducting resonators. We selectively stimulate vacuum Rabi oscillations between the transmon and individual eigenmodes through parametric flux modulation of the transmon frequency. Utilizing these oscillations, we perform a universal set of quantum gates on 38 arbitrary pairs of modes and prepare multimode entangled states, all using only two control lines. We thus achieve hardware-efficient random access multi-qubit control in an architecture compatible with long-lived microwave cavity-based quantum memories. Nature Publishing Group UK 2017-12-04 /pmc/articles/PMC5712528/ /pubmed/29199271 http://dx.doi.org/10.1038/s41467-017-02046-6 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Naik, R. K.
Leung, N.
Chakram, S.
Groszkowski, Peter
Lu, Y.
Earnest, N.
McKay, D. C.
Koch, Jens
Schuster, D. I.
Random access quantum information processors using multimode circuit quantum electrodynamics
title Random access quantum information processors using multimode circuit quantum electrodynamics
title_full Random access quantum information processors using multimode circuit quantum electrodynamics
title_fullStr Random access quantum information processors using multimode circuit quantum electrodynamics
title_full_unstemmed Random access quantum information processors using multimode circuit quantum electrodynamics
title_short Random access quantum information processors using multimode circuit quantum electrodynamics
title_sort random access quantum information processors using multimode circuit quantum electrodynamics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5712528/
https://www.ncbi.nlm.nih.gov/pubmed/29199271
http://dx.doi.org/10.1038/s41467-017-02046-6
work_keys_str_mv AT naikrk randomaccessquantuminformationprocessorsusingmultimodecircuitquantumelectrodynamics
AT leungn randomaccessquantuminformationprocessorsusingmultimodecircuitquantumelectrodynamics
AT chakrams randomaccessquantuminformationprocessorsusingmultimodecircuitquantumelectrodynamics
AT groszkowskipeter randomaccessquantuminformationprocessorsusingmultimodecircuitquantumelectrodynamics
AT luy randomaccessquantuminformationprocessorsusingmultimodecircuitquantumelectrodynamics
AT earnestn randomaccessquantuminformationprocessorsusingmultimodecircuitquantumelectrodynamics
AT mckaydc randomaccessquantuminformationprocessorsusingmultimodecircuitquantumelectrodynamics
AT kochjens randomaccessquantuminformationprocessorsusingmultimodecircuitquantumelectrodynamics
AT schusterdi randomaccessquantuminformationprocessorsusingmultimodecircuitquantumelectrodynamics