Cargando…
Random access quantum information processors using multimode circuit quantum electrodynamics
Qubit connectivity is an important property of a quantum processor, with an ideal processor having random access—the ability of arbitrary qubit pairs to interact directly. This a challenge with superconducting circuits, as state-of-the-art architectures rely on only nearest-neighbor coupling. Here,...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5712528/ https://www.ncbi.nlm.nih.gov/pubmed/29199271 http://dx.doi.org/10.1038/s41467-017-02046-6 |
_version_ | 1783283235993681920 |
---|---|
author | Naik, R. K. Leung, N. Chakram, S. Groszkowski, Peter Lu, Y. Earnest, N. McKay, D. C. Koch, Jens Schuster, D. I. |
author_facet | Naik, R. K. Leung, N. Chakram, S. Groszkowski, Peter Lu, Y. Earnest, N. McKay, D. C. Koch, Jens Schuster, D. I. |
author_sort | Naik, R. K. |
collection | PubMed |
description | Qubit connectivity is an important property of a quantum processor, with an ideal processor having random access—the ability of arbitrary qubit pairs to interact directly. This a challenge with superconducting circuits, as state-of-the-art architectures rely on only nearest-neighbor coupling. Here, we implement a random access superconducting quantum information processor, demonstrating universal operations on a nine-qubit memory, with a Josephson junction transmon circuit serving as the central processor. The quantum memory uses the eigenmodes of a linear array of coupled superconducting resonators. We selectively stimulate vacuum Rabi oscillations between the transmon and individual eigenmodes through parametric flux modulation of the transmon frequency. Utilizing these oscillations, we perform a universal set of quantum gates on 38 arbitrary pairs of modes and prepare multimode entangled states, all using only two control lines. We thus achieve hardware-efficient random access multi-qubit control in an architecture compatible with long-lived microwave cavity-based quantum memories. |
format | Online Article Text |
id | pubmed-5712528 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-57125282017-12-05 Random access quantum information processors using multimode circuit quantum electrodynamics Naik, R. K. Leung, N. Chakram, S. Groszkowski, Peter Lu, Y. Earnest, N. McKay, D. C. Koch, Jens Schuster, D. I. Nat Commun Article Qubit connectivity is an important property of a quantum processor, with an ideal processor having random access—the ability of arbitrary qubit pairs to interact directly. This a challenge with superconducting circuits, as state-of-the-art architectures rely on only nearest-neighbor coupling. Here, we implement a random access superconducting quantum information processor, demonstrating universal operations on a nine-qubit memory, with a Josephson junction transmon circuit serving as the central processor. The quantum memory uses the eigenmodes of a linear array of coupled superconducting resonators. We selectively stimulate vacuum Rabi oscillations between the transmon and individual eigenmodes through parametric flux modulation of the transmon frequency. Utilizing these oscillations, we perform a universal set of quantum gates on 38 arbitrary pairs of modes and prepare multimode entangled states, all using only two control lines. We thus achieve hardware-efficient random access multi-qubit control in an architecture compatible with long-lived microwave cavity-based quantum memories. Nature Publishing Group UK 2017-12-04 /pmc/articles/PMC5712528/ /pubmed/29199271 http://dx.doi.org/10.1038/s41467-017-02046-6 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Naik, R. K. Leung, N. Chakram, S. Groszkowski, Peter Lu, Y. Earnest, N. McKay, D. C. Koch, Jens Schuster, D. I. Random access quantum information processors using multimode circuit quantum electrodynamics |
title | Random access quantum information processors using multimode circuit quantum electrodynamics |
title_full | Random access quantum information processors using multimode circuit quantum electrodynamics |
title_fullStr | Random access quantum information processors using multimode circuit quantum electrodynamics |
title_full_unstemmed | Random access quantum information processors using multimode circuit quantum electrodynamics |
title_short | Random access quantum information processors using multimode circuit quantum electrodynamics |
title_sort | random access quantum information processors using multimode circuit quantum electrodynamics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5712528/ https://www.ncbi.nlm.nih.gov/pubmed/29199271 http://dx.doi.org/10.1038/s41467-017-02046-6 |
work_keys_str_mv | AT naikrk randomaccessquantuminformationprocessorsusingmultimodecircuitquantumelectrodynamics AT leungn randomaccessquantuminformationprocessorsusingmultimodecircuitquantumelectrodynamics AT chakrams randomaccessquantuminformationprocessorsusingmultimodecircuitquantumelectrodynamics AT groszkowskipeter randomaccessquantuminformationprocessorsusingmultimodecircuitquantumelectrodynamics AT luy randomaccessquantuminformationprocessorsusingmultimodecircuitquantumelectrodynamics AT earnestn randomaccessquantuminformationprocessorsusingmultimodecircuitquantumelectrodynamics AT mckaydc randomaccessquantuminformationprocessorsusingmultimodecircuitquantumelectrodynamics AT kochjens randomaccessquantuminformationprocessorsusingmultimodecircuitquantumelectrodynamics AT schusterdi randomaccessquantuminformationprocessorsusingmultimodecircuitquantumelectrodynamics |