Cargando…

Insights from the protein-protein interaction network analysis of Mycobacterium tuberculosis toxin-antitoxin systems

Protein-protein interaction (PPI) network analysis is a powerful strategy to understand M. tuberculosis (Mtb) system level physiology in the identification of hub proteins. In the present study, the PPI network of 79 Mtb toxin-antitoxin (TA) systems comprising of 167 nodes and 234 edges was investig...

Descripción completa

Detalles Bibliográficos
Autores principales: Thakur, Zoozeal, Dharra, Renu, Saini, Vandana, Kumar, Ajit, Mehta, Promod K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5712783/
https://www.ncbi.nlm.nih.gov/pubmed/29225431
http://dx.doi.org/10.6026/97320630013380
Descripción
Sumario:Protein-protein interaction (PPI) network analysis is a powerful strategy to understand M. tuberculosis (Mtb) system level physiology in the identification of hub proteins. In the present study, the PPI network of 79 Mtb toxin-antitoxin (TA) systems comprising of 167 nodes and 234 edges was investigated. The topological properties of PPI network were examined by 'Network analyzer' a cytoscape plugin app and STRING database. The key enriched biological processes and the molecular functions of Mtb TA systems were analyzed by STRING. Manual curation of the PPI data identified four proteins (i.e. Rv2762c, VapB14, VapB42 and VapC42) to possess the highest number of interacting partners. The top 15% hub proteins were identified in the PPI network by employing two statistical measures, i.e. betweenness and radiality by employing cytohubba. Insights gained from the molecular protein models of VapC9 and VapC10 are also documented.