Cargando…
Micro-Droplet Detection Method for Measuring the Concentration of Alkaline Phosphatase-Labeled Nanoparticles in Fluorescence Microscopy
This paper developed and evaluated a quantitative image analysis method to measure the concentration of the nanoparticles on which alkaline phosphatase (AP) was immobilized. These AP-labeled nanoparticles are widely used as signal markers for tagging biomolecules at nanometer and sub-nanometer scale...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5712791/ https://www.ncbi.nlm.nih.gov/pubmed/29160812 http://dx.doi.org/10.3390/s17112685 |
Sumario: | This paper developed and evaluated a quantitative image analysis method to measure the concentration of the nanoparticles on which alkaline phosphatase (AP) was immobilized. These AP-labeled nanoparticles are widely used as signal markers for tagging biomolecules at nanometer and sub-nanometer scales. The AP-labeled nanoparticle concentration measurement can then be directly used to quantitatively analyze the biomolecular concentration. Micro-droplets are mono-dispersed micro-reactors that can be used to encapsulate and detect AP-labeled nanoparticles. Micro-droplets include both empty micro-droplets and fluorescent micro-droplets, while fluorescent micro-droplets are generated from the fluorescence reaction between the APs adhering to a single nanoparticle and corresponding fluorogenic substrates within droplets. By detecting micro-droplets and calculating the proportion of fluorescent micro-droplets to the overall micro-droplets, we can calculate the AP-labeled nanoparticle concentration. The proposed micro-droplet detection method includes the following steps: (1) Gaussian filtering to remove the noise of overall fluorescent targets, (2) a contrast-limited, adaptive histogram equalization processing to enhance the contrast of weakly luminescent micro-droplets, (3) an red maximizing inter-class variance thresholding method (OTSU) to segment the enhanced image for getting the binary map of the overall micro-droplets, (4) a circular Hough transform (CHT) method to detect overall micro-droplets and (5) an intensity-mean-based thresholding segmentation method to extract the fluorescent micro-droplets. The experimental results of fluorescent micro-droplet images show that the average accuracy of our micro-droplet detection method is 0.9586; the average true positive rate is 0.9502; and the average false positive rate is 0.0073. The detection method can be successfully applied to measure AP-labeled nanoparticle concentration in fluorescence microscopy. |
---|