Cargando…
An 18-subject EEG data collection using a visual-oddball task, designed for benchmarking algorithms and headset performance comparisons
This data note describes an 18-subject EEG (electroencephalogram) data collection from an experiment in which subjects performed a standard visual oddball task. Several research projects have used this data to test artifact detection, classification, transfer learning, EEG preprocessing, blink detec...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5712810/ https://www.ncbi.nlm.nih.gov/pubmed/29226211 http://dx.doi.org/10.1016/j.dib.2017.11.032 |
Sumario: | This data note describes an 18-subject EEG (electroencephalogram) data collection from an experiment in which subjects performed a standard visual oddball task. Several research projects have used this data to test artifact detection, classification, transfer learning, EEG preprocessing, blink detection, and automated annotation algorithms. We are releasing the data in three formats to enable benchmarking of EEG algorithms in many areas. The data was acquired using a Biosemi Active 2 EEG headset and includes 64 channels of EEG, 4 channels of EOG (electrooculogram), and 2 mastoid reference channels. |
---|