Cargando…
Two-Stage Multi-Task Representation Learning for Synthetic Aperture Radar (SAR) Target Images Classification
In this paper, we propose a two-stage multi-task learning representation method for the classification of synthetic aperture radar (SAR) target images. The first stage of the proposed approach uses multi-features joint sparse representation learning, modeled as a [Formula: see text]-norm regularized...
Autores principales: | Zhang, Xinzheng, Wang, Yijian, Tan, Zhiying, Li, Dong, Liu, Shujun, Wang, Tao, Li, Yongming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5712820/ https://www.ncbi.nlm.nih.gov/pubmed/29104279 http://dx.doi.org/10.3390/s17112506 |
Ejemplares similares
-
Adaptive Local Aspect Dictionary Pair Learning for Synthetic Aperture Radar Target Image Classification
por: Zhang, Xinzheng, et al.
Publicado: (2018) -
Multi-antenna synthetic aperture radar
por: Wang, Wen-Qin
Publicado: (2013) -
Synthetic Aperture Radar Image Despeckling Based on Multi-Weighted Sparse Coding
por: Liu, Shujun, et al.
Publicado: (2022) -
Synthetic aperture radar polarimetry
por: Van Zyl, Jakob, et al.
Publicado: (2011) -
Imaging with Synthetic Aperture Radar
por: Massonnet, Didier, et al.
Publicado: (2008)