Cargando…

Comparison of Measurement Models for 3D Magnetic Localization and Tracking

In this paper, we consider magnetic positioning and tracking of objects and provide a comparison of the characteristics of two major measurement models: the magnetic dipole model and the mutual inductance model. The numerical results obtained by applying these models to a short-range position measur...

Descripción completa

Detalles Bibliográficos
Autores principales: De Angelis, Guido, De Angelis, Alessio, Moschitta, Antonio, Carbone, Paolo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5712828/
https://www.ncbi.nlm.nih.gov/pubmed/29099768
http://dx.doi.org/10.3390/s17112527
Descripción
Sumario:In this paper, we consider magnetic positioning and tracking of objects and provide a comparison of the characteristics of two major measurement models: the magnetic dipole model and the mutual inductance model. The numerical results obtained by applying these models to a short-range position measurement application, with a maximum operating distance of approximately 50 cm, are compared. Based on the results of this comparison, a prototype 9-sensor array is developed, experimental tests are performed, and extensive measurement results are presented. Outcomes show the feasibility of tracking the position and orientation of a mobile coil in real time with a median positioning error below 1 cm and a worst-case error of about 2 cm and 11 degrees inside a spatial region of 30 × 30 × 30 cm(3) operational volume.