Cargando…
Deep Recurrent Neural Networks for Human Activity Recognition
Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform...
Autores principales: | Murad, Abdulmajid, Pyun, Jae-Young |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5712979/ https://www.ncbi.nlm.nih.gov/pubmed/29113103 http://dx.doi.org/10.3390/s17112556 |
Ejemplares similares
-
ECG Identification For Personal Authentication Using LSTM-Based Deep Recurrent Neural Networks
por: Kim, Beom-Hun, et al.
Publicado: (2020) -
Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition
por: Ordóñez, Francisco Javier, et al.
Publicado: (2016) -
Human activity recognition using magnetic induction-based motion signals and deep recurrent neural networks
por: Golestani, Negar, et al.
Publicado: (2020) -
Automatic Pharyngeal Phase Recognition in Untrimmed Videofluoroscopic Swallowing Study Using Transfer Learning with Deep Convolutional Neural Networks
por: Lee, Ki-Sun, et al.
Publicado: (2021) -
Author Correction: Human activity recognition using magnetic induction-based motion signals and deep recurrent neural networks
por: Golestani, Negar, et al.
Publicado: (2020)