Cargando…
Supervised Estimation of Granger-Based Causality between Time Series
Brain effective connectivity aims to detect causal interactions between distinct brain units and it is typically studied through the analysis of direct measurements of the neural activity, e.g., magneto/electroencephalography (M/EEG) signals. The literature on methods for causal inference is vast. I...
Autores principales: | Benozzo, Danilo, Olivetti, Emanuele, Avesani, Paolo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5712990/ https://www.ncbi.nlm.nih.gov/pubmed/29238300 http://dx.doi.org/10.3389/fninf.2017.00068 |
Ejemplares similares
-
Classification-Based Prediction of Effective Connectivity Between Timeseries With a Realistic Cortical Network Model
por: Olivetti, Emanuele, et al.
Publicado: (2018) -
Bayesian estimation of directed functional coupling from brain recordings
por: Benozzo, Danilo, et al.
Publicado: (2017) -
Granger Causality on forward and Reversed Time Series
por: Chvosteková, Martina, et al.
Publicado: (2021) -
Measures of Coupling between Neural Populations Based on Granger Causality Principle
por: Kaminski, Maciej, et al.
Publicado: (2016) -
Granger causality is designed to measure effect, not mechanism
por: Barrett, Adam B., et al.
Publicado: (2013)