Cargando…
DEEP-SEE: Joint Object Detection, Tracking and Recognition with Application to Visually Impaired Navigational Assistance
In this paper, we introduce the so-called DEEP-SEE framework that jointly exploits computer vision algorithms and deep convolutional neural networks (CNNs) to detect, track and recognize in real time objects encountered during navigation in the outdoor environment. A first feature concerns an object...
Autores principales: | Tapu, Ruxandra, Mocanu, Bogdan, Zaharia, Titus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5713031/ https://www.ncbi.nlm.nih.gov/pubmed/29143795 http://dx.doi.org/10.3390/s17112473 |
Ejemplares similares
-
Utterance Level Feature Aggregation with Deep Metric Learning for Speech Emotion Recognition
por: Mocanu, Bogdan, et al.
Publicado: (2021) -
When Ultrasonic Sensors and Computer Vision Join Forces for Efficient Obstacle Detection and Recognition
por: Mocanu, Bogdan, et al.
Publicado: (2016) -
DVS Benchmark Datasets for Object Tracking, Action Recognition, and Object Recognition
por: Hu, Yuhuang, et al.
Publicado: (2016) -
Obstacle Detection System for Navigation Assistance of Visually Impaired People Based on Deep Learning Techniques
por: Said, Yahia, et al.
Publicado: (2023) -
Review of Navigation Assistive Tools and Technologies for the Visually Impaired
por: Messaoudi, Mohamed Dhiaeddine, et al.
Publicado: (2022)