Cargando…
Target Tracking with Sensor Navigation Using Coupled RSS and AoA Measurements
This work addresses the problem of tracking a signal-emitting mobile target in wireless sensor networks (WSNs) with navigated mobile sensors. The sensors are properly equipped to acquire received signal strength (RSS) and angle of arrival (AoA) measurements from the received signal, while the target...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5713032/ https://www.ncbi.nlm.nih.gov/pubmed/29160797 http://dx.doi.org/10.3390/s17112690 |
_version_ | 1783283330706309120 |
---|---|
author | Tomic, Slavisa Beko, Marko Dinis, Rui Gomes, João Pedro |
author_facet | Tomic, Slavisa Beko, Marko Dinis, Rui Gomes, João Pedro |
author_sort | Tomic, Slavisa |
collection | PubMed |
description | This work addresses the problem of tracking a signal-emitting mobile target in wireless sensor networks (WSNs) with navigated mobile sensors. The sensors are properly equipped to acquire received signal strength (RSS) and angle of arrival (AoA) measurements from the received signal, while the target transmit power is assumed not known. We start by showing how to linearize the highly non-linear measurement model. Then, by employing a Bayesian approach, we combine the linearized observation model with prior knowledge extracted from the state transition model. Based on the maximum a posteriori (MAP) principle and the Kalman filtering (KF) framework, we propose new MAP and KF algorithms, respectively. We also propose a simple and efficient mobile sensor navigation procedure, which allows us to further enhance the estimation accuracy of our algorithms with a reduced number of sensors. Model flaws, which result in imperfect knowledge about the path loss exponent (PLE) and the true mobile sensors’ locations, are taken into consideration. We have carried out an extensive simulation study, and our results confirm the superiority of the proposed algorithms, as well as the effectiveness of the proposed navigation routine. |
format | Online Article Text |
id | pubmed-5713032 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-57130322017-12-07 Target Tracking with Sensor Navigation Using Coupled RSS and AoA Measurements Tomic, Slavisa Beko, Marko Dinis, Rui Gomes, João Pedro Sensors (Basel) Article This work addresses the problem of tracking a signal-emitting mobile target in wireless sensor networks (WSNs) with navigated mobile sensors. The sensors are properly equipped to acquire received signal strength (RSS) and angle of arrival (AoA) measurements from the received signal, while the target transmit power is assumed not known. We start by showing how to linearize the highly non-linear measurement model. Then, by employing a Bayesian approach, we combine the linearized observation model with prior knowledge extracted from the state transition model. Based on the maximum a posteriori (MAP) principle and the Kalman filtering (KF) framework, we propose new MAP and KF algorithms, respectively. We also propose a simple and efficient mobile sensor navigation procedure, which allows us to further enhance the estimation accuracy of our algorithms with a reduced number of sensors. Model flaws, which result in imperfect knowledge about the path loss exponent (PLE) and the true mobile sensors’ locations, are taken into consideration. We have carried out an extensive simulation study, and our results confirm the superiority of the proposed algorithms, as well as the effectiveness of the proposed navigation routine. MDPI 2017-11-21 /pmc/articles/PMC5713032/ /pubmed/29160797 http://dx.doi.org/10.3390/s17112690 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tomic, Slavisa Beko, Marko Dinis, Rui Gomes, João Pedro Target Tracking with Sensor Navigation Using Coupled RSS and AoA Measurements |
title | Target Tracking with Sensor Navigation Using Coupled RSS and AoA Measurements |
title_full | Target Tracking with Sensor Navigation Using Coupled RSS and AoA Measurements |
title_fullStr | Target Tracking with Sensor Navigation Using Coupled RSS and AoA Measurements |
title_full_unstemmed | Target Tracking with Sensor Navigation Using Coupled RSS and AoA Measurements |
title_short | Target Tracking with Sensor Navigation Using Coupled RSS and AoA Measurements |
title_sort | target tracking with sensor navigation using coupled rss and aoa measurements |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5713032/ https://www.ncbi.nlm.nih.gov/pubmed/29160797 http://dx.doi.org/10.3390/s17112690 |
work_keys_str_mv | AT tomicslavisa targettrackingwithsensornavigationusingcoupledrssandaoameasurements AT bekomarko targettrackingwithsensornavigationusingcoupledrssandaoameasurements AT dinisrui targettrackingwithsensornavigationusingcoupledrssandaoameasurements AT gomesjoaopedro targettrackingwithsensornavigationusingcoupledrssandaoameasurements |